bibtype |
J -
Journal Article
|
ARLID |
0485286 |
utime |
20240103215430.4 |
mtime |
20180122235959.9 |
SCOPUS |
85040344897 |
WOS |
000448600200006 |
DOI |
10.1142/S021949371850048X |
title
(primary) (eng) |
Lp-valued stochastic convolution integral driven by Volterra noise |
specification |
page_count |
22 s. |
media_type |
P |
|
serial |
ARLID |
cav_un_epca*0294038 |
ISSN |
0219-4937 |
title
|
Stochastics and Dynamics |
volume_id |
18 |
publisher |
name |
World Scientific Publishing |
|
|
keyword |
Volterra process |
keyword |
Rosenblatt process |
keyword |
hypercontractivity |
author
(primary) |
ARLID |
cav_un_auth*0356972 |
name1 |
Čoupek |
name2 |
P. |
country |
CZ |
|
author
|
ARLID |
cav_un_auth*0286108 |
name1 |
Maslowski |
name2 |
B. |
country |
CZ |
|
author
|
ARLID |
cav_un_auth*0260292 |
full_dept (cz) |
Stochastická informatika |
full_dept |
Department of Stochastic Informatics |
department (cz) |
SI |
department |
SI |
full_dept |
Department of Stochastic Informatics |
name1 |
Ondreját |
name2 |
Martin |
institution |
UTIA-B |
country |
CZ |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
source |
|
cas_special |
project |
ARLID |
cav_un_auth*0321649 |
project_id |
GA15-08819S |
agency |
GA ČR |
country |
CZ |
|
abstract
(eng) |
Space-time regularity of linear stochastic partial differential equations is studied. The solution is defined in the mild sense in the state space Lp. The corresponding regularity is obtained by showing that the stochastic convolution integrals are Hölder continuous in a suitable function space. In particular cases, this allows us to show space-time Hölder continuity of the solution. The main tool used is a hypercontractivity result on Banach-space valued random variables in a finite Wiener chaos. |
result_subspec |
WOS |
RIV |
BA |
FORD0 |
10000 |
FORD1 |
10100 |
FORD2 |
10101 |
reportyear |
2019 |
num_of_auth |
3 |
inst_support |
RVO:67985556 |
permalink |
http://hdl.handle.net/11104/0280356 |
mrcbC61 |
1 |
confidential |
S |
article_num |
1850048 |
mrcbC86 |
1 Article Statistics Probability |
mrcbT16-e |
STATISTICSPROBABILITY |
mrcbT16-j |
0.566 |
mrcbT16-s |
0.465 |
mrcbT16-B |
30.866 |
mrcbT16-D |
Q3 |
mrcbT16-E |
Q3 |
arlyear |
2018 |
mrcbU14 |
85040344897 SCOPUS |
mrcbU24 |
PUBMED |
mrcbU34 |
000448600200006 WOS |
mrcbU63 |
cav_un_epca*0294038 Stochastics and Dynamics 0219-4937 1793-6799 Roč. 18 č. 6 2018 World Scientific Publishing |
|