bibtype J - Journal Article
ARLID 0485286
utime 20240103215430.4
mtime 20180122235959.9
SCOPUS 85040344897
WOS 000448600200006
DOI 10.1142/S021949371850048X
title (primary) (eng) Lp-valued stochastic convolution integral driven by Volterra noise
specification
page_count 22 s.
media_type P
serial
ARLID cav_un_epca*0294038
ISSN 0219-4937
title Stochastics and Dynamics
volume_id 18
publisher
name World Scientific Publishing
keyword Volterra process
keyword Rosenblatt process
keyword hypercontractivity
author (primary)
ARLID cav_un_auth*0356972
name1 Čoupek
name2 P.
country CZ
author
ARLID cav_un_auth*0286108
name1 Maslowski
name2 B.
country CZ
author
ARLID cav_un_auth*0260292
full_dept (cz) Stochastická informatika
full_dept Department of Stochastic Informatics
department (cz) SI
department SI
full_dept Department of Stochastic Informatics
name1 Ondreját
name2 Martin
institution UTIA-B
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2018/SI/ondrejat-0485286.pdf
cas_special
project
ARLID cav_un_auth*0321649
project_id GA15-08819S
agency GA ČR
country CZ
abstract (eng) Space-time regularity of linear stochastic partial differential equations is studied. The solution is defined in the mild sense in the state space Lp. The corresponding regularity is obtained by showing that the stochastic convolution integrals are Hölder continuous in a suitable function space. In particular cases, this allows us to show space-time Hölder continuity of the solution. The main tool used is a hypercontractivity result on Banach-space valued random variables in a finite Wiener chaos.
result_subspec WOS
RIV BA
FORD0 10000
FORD1 10100
FORD2 10101
reportyear 2019
num_of_auth 3
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0280356
mrcbC61 1
confidential S
article_num 1850048
mrcbC86 1 Article Statistics Probability
mrcbT16-e STATISTICSPROBABILITY
mrcbT16-j 0.566
mrcbT16-s 0.465
mrcbT16-B 30.866
mrcbT16-D Q3
mrcbT16-E Q3
arlyear 2018
mrcbU14 85040344897 SCOPUS
mrcbU24 PUBMED
mrcbU34 000448600200006 WOS
mrcbU63 cav_un_epca*0294038 Stochastics and Dynamics 0219-4937 1793-6799 Roč. 18 č. 6 2018 World Scientific Publishing