bibtype J - Journal Article
ARLID 0485363
utime 20240103215436.4
mtime 20180123235959.9
SCOPUS 85040323043
WOS 000425565300007
DOI 10.1016/j.ins.2017.12.029
title (primary) (eng) CF-integrals: A new family of pre-aggregation functions with application to fuzzy rule-based classification systems
specification
page_count 17 s.
media_type P
serial
ARLID cav_un_epca*0256752
ISSN 0020-0255
title Information Sciences
volume_id 435
volume 1 (2018)
page_num 94-110
publisher
name Elsevier
keyword CF-integral
keyword classification problems
keyword pre-aggregation
author (primary)
ARLID cav_un_auth*0330393
share 15
name1 Lucca
name2 G.
country ES
garant K
author
ARLID cav_un_auth*0357025
share 15
name1 Sanz
name2 A.
country ES
author
ARLID cav_un_auth*0330395
share 15
name1 Dimuro
name2 G. P.
country BR
author
ARLID cav_un_auth*0298830
share 15
name1 Bedregal
name2 B.
country BR
author
ARLID cav_un_auth*0271524
share 15
name1 Bustince
name2 H.
country ES
author
ARLID cav_un_auth*0101163
full_dept (cz) Ekonometrie
full_dept Department of Econometrics
department (cz) E
department E
full_dept Department of Econometrics
share 25
name1 Mesiar
name2 Radko
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2018/E/mesiar-0485363.pdf
cas_special
abstract (eng) This paper introduces the family of CF-integrals, which are pre-aggregations functions that generalizes the Choquet integral considering a bivariate function F that is left 0-absorbent. We show that CF-integrals are 1->-pre-aggregation functions, studying in which conditions they are idempotent and/or averaging functions. This characterization is an important issue of our approach, since we apply these functions in the Fuzzy Reasoning Method (FRM) of a fuzzy rule-based classification system and, in the literature, it is possible to observe that non-averaging aggregation functions usually provide better results. We carry out a study with several subfamilies of CF-integrals having averaging or non-averaging characteristics. As expected, the proposed non-averaging CF-integrals obtain more accurate results than the averaging ones, thus, offering new possibilities for aggregating accurately the information in the FRM. Furthermore, it allows us to enhance the results of classical FRMs like the winning rule and the additive combination.
RIV BA
FORD0 10000
FORD1 10100
FORD2 10101
reportyear 2019
num_of_auth 6
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0281414
confidential S
mrcbC86 1* Article Computer Science Information Systems
mrcbT16-e COMPUTERSCIENCEINFORMATIONSYSTEMS
mrcbT16-j 1.111
mrcbT16-s 1.620
mrcbT16-B 86.641
mrcbT16-D Q1
mrcbT16-E Q1
arlyear 2018
mrcbU14 85040323043 SCOPUS
mrcbU24 PUBMED
mrcbU34 000425565300007 WOS
mrcbU63 cav_un_epca*0256752 Information Sciences 0020-0255 1872-6291 Roč. 435 č. 1 2018 94 110 Elsevier