bibtype |
J -
Journal Article
|
ARLID |
0486421 |
utime |
20240103215557.4 |
mtime |
20180212235959.9 |
SCOPUS |
85044581850 |
WOS |
000436569200005 |
DOI |
10.1016/j.fss.2018.01.016 |
title
(primary) (eng) |
Back-and-forth systems for fuzzy first-order models |
specification |
page_count |
16 s. |
media_type |
P |
|
serial |
ARLID |
cav_un_epca*0256642 |
ISSN |
0165-0114 |
title
|
Fuzzy Sets and Systems |
volume_id |
345 |
volume |
1 (2018) |
page_num |
83-98 |
publisher |
|
|
keyword |
Mathematical fuzzy logic |
keyword |
first-order fuzzy logics |
keyword |
non-classical logics |
author
(primary) |
ARLID |
cav_un_auth*0311883 |
name1 |
Dellunde |
name2 |
P. |
country |
ES |
|
author
|
ARLID |
cav_un_auth*0343841 |
name1 |
García-Cerdaña |
name2 |
A. |
country |
ES |
|
author
|
ARLID |
cav_un_auth*0293476 |
name1 |
Noguera |
name2 |
Carles |
full_dept (cz) |
Matematická teorie rozhodování |
full_dept |
Department of Decision Making Theory |
department (cz) |
MTR |
department |
MTR |
institution |
UTIA-B |
full_dept |
Department of Decision Making Theory |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
source |
|
cas_special |
project |
ARLID |
cav_un_auth*0323282 |
project_id |
GF15-34650L |
agency |
GA ČR |
country |
CZ |
|
abstract
(eng) |
This paper continues the study of model theory for fuzzy logics by addressing the fundamental issue of classifying models according to their first-order theory. Three different definitions of elementary equivalence for fuzzy first-order models are introduced and separated by suitable counterexamples. We propose several back-and-forth conditions, based both on classical two-sorted structures and on non-classical structures, that are useful to obtain elementary equivalence in particular cases as we illustrate with several examples. |
result_subspec |
WOS |
RIV |
BA |
FORD0 |
10000 |
FORD1 |
10100 |
FORD2 |
10101 |
reportyear |
2019 |
inst_support |
RVO:67985556 |
permalink |
http://hdl.handle.net/11104/0281410 |
confidential |
S |
mrcbC86 |
2 Article Computer Science Theory Methods|Mathematics Applied|Statistics Probability |
mrcbT16-e |
COMPUTERSCIENCETHEORYMETHODS|MATHEMATICSAPPLIED|STATISTICSPROBABILITY |
mrcbT16-j |
0.63 |
mrcbT16-s |
1.347 |
mrcbT16-B |
44.862 |
mrcbT16-D |
Q3 |
mrcbT16-E |
Q1* |
arlyear |
2018 |
mrcbU14 |
85044581850 SCOPUS |
mrcbU24 |
PUBMED |
mrcbU34 |
000436569200005 WOS |
mrcbU63 |
cav_un_epca*0256642 Fuzzy Sets and Systems 0165-0114 1872-6801 Roč. 345 č. 1 2018 83 98 Elsevier |
|