| bibtype |
J -
Journal Article
|
| ARLID |
0487019 |
| utime |
20240103215642.7 |
| mtime |
20180221235959.9 |
| SCOPUS |
85043500334 |
| WOS |
000426630900034 |
| DOI |
10.1137/16M1103464 |
| title
(primary) (eng) |
Generalized W1-1-Young Measures and Relaxation of Problems with Linear Growth |
| specification |
| page_count |
44 s. |
| media_type |
P |
|
| serial |
| ARLID |
cav_un_epca*0257597 |
| ISSN |
0036-1410 |
| title
|
SIAM Journal on Mathematical Analysis |
| volume_id |
50 |
| volume |
1 (2018) |
| page_num |
1076-1119 |
| publisher |
| name |
SIAM Society for Industrial and Applied Mathematics |
|
|
| keyword |
lower semicontinuity |
| keyword |
quasiconvexity |
| keyword |
Young measures |
| author
(primary) |
| ARLID |
cav_un_auth*0359167 |
| name1 |
Baia |
| name2 |
M. |
| country |
PT |
|
| author
|
| ARLID |
cav_un_auth*0359168 |
| name1 |
Krömer |
| name2 |
Stefan |
| institution |
UTIA-B |
| full_dept (cz) |
Matematická teorie rozhodování |
| full_dept |
Department of Decision Making Theory |
| department (cz) |
MTR |
| department |
MTR |
| full_dept |
Department of Decision Making Theory |
| country |
DE |
| fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
| author
|
| ARLID |
cav_un_auth*0101142 |
| name1 |
Kružík |
| name2 |
Martin |
| institution |
UTIA-B |
| full_dept (cz) |
Matematická teorie rozhodování |
| full_dept |
Department of Decision Making Theory |
| department (cz) |
MTR |
| department |
MTR |
| full_dept |
Department of Decision Making Theory |
| fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
| source |
|
| cas_special |
| project |
| ARLID |
cav_un_auth*0304434 |
| project_id |
GA14-15264S |
| agency |
GA ČR |
|
| project |
| ARLID |
cav_un_auth*0331681 |
| project_id |
GF16-34894L |
| agency |
GA ČR |
| country |
CZ |
|
| abstract
(eng) |
In this work we completely characterize generalized Young measures generated by sequences of gradients of maps in $W^{1,1}(\Omega-{R}^M)$, where $\Omega\subset{R}^N$. This characterization extends and completes previous analysis by Kristensen and Rindler [Arch. Ration. Mech. Anal., 197 (2010), pp. 539--598 and 203 (2012), pp. 693--700] where concentrations of the sequence of gradients at the boundary of $\Omega$ were excluded. As an application of our result we study the relaxation of non-quasiconvex variational problems with linear growth at infinity, and, finally, we link our characterization to Souček spaces [J. Souček, Časopis Pro Pěstování Matematiky, 97 (1972), pp. 10--46], an extension of $W^{1,1}(\Omega-{\mathbb{R}}^M)$ where gradients are considered as measures on $\bar\Omega$. |
| RIV |
BA |
| FORD0 |
10000 |
| FORD1 |
10100 |
| FORD2 |
10101 |
| reportyear |
2019 |
| num_of_auth |
3 |
| mrcbC52 |
4 A hod 4ah 20231122143037.9 |
| inst_support |
RVO:67985556 |
| permalink |
http://hdl.handle.net/11104/0282552 |
| mrcbC64 |
1 Department of Decision Making Theory UTIA-B 10102 MATHEMATICS, APPLIED |
| confidential |
S |
| mrcbC86 |
2 Article Mathematics Applied |
| mrcbT16-e |
MATHEMATICS.APPLIED |
| mrcbT16-f |
1.845 |
| mrcbT16-g |
0.28 |
| mrcbT16-h |
13.2 |
| mrcbT16-i |
0.0151 |
| mrcbT16-j |
1.525 |
| mrcbT16-k |
6078 |
| mrcbT16-s |
2.396 |
| mrcbT16-5 |
1.235 |
| mrcbT16-6 |
200 |
| mrcbT16-7 |
Q2 |
| mrcbT16-B |
91.304 |
| mrcbT16-C |
63.6 |
| mrcbT16-D |
Q1* |
| mrcbT16-E |
Q1* |
| mrcbT16-M |
1.07 |
| mrcbT16-N |
Q2 |
| mrcbT16-P |
63.583 |
| arlyear |
2018 |
| mrcbTft |
\nSoubory v repozitáři: kruzik-0487019.pdf |
| mrcbU14 |
85043500334 SCOPUS |
| mrcbU24 |
PUBMED |
| mrcbU34 |
000426630900034 WOS |
| mrcbU63 |
cav_un_epca*0257597 SIAM Journal on Mathematical Analysis 0036-1410 1095-7154 Roč. 50 č. 1 2018 1076 1119 SIAM Society for Industrial and Applied Mathematics |
|