bibtype J - Journal Article
ARLID 0490791
utime 20240103220201.4
mtime 20180629235959.9
SCOPUS 85047063158
WOS 000437074500005
DOI 10.1016/j.tcs.2018.05.010
title (primary) (eng) Fraisse classes of graded relational structures
specification
page_count 10 s.
media_type P
serial
ARLID cav_un_epca*0257658
ISSN 0304-3975
title Theoretical Computer Science
volume_id 737
volume 1 (2018)
page_num 81-90
publisher
name Elsevier
keyword Mathematical fuzzy logic
keyword Fuzzy structure
keyword Fraïssé limit
keyword Fuzzy order
keyword Weighted graphs
keyword Graded model theory
author (primary)
ARLID cav_un_auth*0362070
name1 Badia
name2 G.
country AT
author
ARLID cav_un_auth*0293476
full_dept (cz) Matematická teorie rozhodování
full_dept Department of Decision Making Theory
department (cz) MTR
department MTR
full_dept Department of Decision Making Theory
name1 Noguera
name2 Carles
institution UTIA-B
garant K
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2018/MTR/noguera-0490791.pdf
cas_special
project
ARLID cav_un_auth*0349495
project_id GA17-04630S
agency GA ČR
abstract (eng) We study classes of graded structures satisfying the properties of amalgamation, joint embedding and hereditariness. Given appropriate conditions, we can build a graded analogue of the Fraïssé limit. Some examples such as the class of all finite weighted graphs or the class of all finite fuzzy orders (evaluated on a particular countable algebra) will be examined.
result_subspec WOS
RIV BA
FORD0 10000
FORD1 10100
FORD2 10102
reportyear 2019
num_of_auth 2
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0285274
confidential S
mrcbC86 3+4 Article Computer Science Theory Methods
mrcbT16-e COMPUTERSCIENCETHEORYMETHODS
mrcbT16-j 0.42
mrcbT16-s 0.494
mrcbT16-B 39.031
mrcbT16-D Q3
mrcbT16-E Q2
arlyear 2018
mrcbU14 85047063158 SCOPUS
mrcbU24 PUBMED
mrcbU34 000437074500005 WOS
mrcbU63 cav_un_epca*0257658 Theoretical Computer Science 0304-3975 1879-2294 Roč. 737 č. 1 2018 81 90 Elsevier