bibtype M - Monography Chapter
ARLID 0491344
utime 20240103220248.0
mtime 20180724235959.9
SCOPUS 85049685686
WOS 000466552900015
DOI 10.1007/978-3-319-78437-3_14
title (primary) (eng) Clustering Non-Gaussian Data Using Mixture Estimation with Uniform Components
specification
book_pages 330
page_count 17 s.
media_type P
serial
ARLID cav_un_epca*0491343
ISBN 978-3-319-78436-6
title Practical Issues of Intelligent Innovations. Studies in Systems, Decision and Control
page_num 313-330
publisher
place Cham
name Springer
year 2018
editor
name1 Sgurev
name2 V.
editor
name1 Jotsov
name2 V.
editor
name1 Kacprzyk
name2 J.
keyword non-Gaussian data
keyword mixture estimation
keyword uniform components
author (primary)
ARLID cav_un_auth*0101167
name1 Nagy
name2 Ivan
institution UTIA-B
full_dept (cz) Zpracování signálů
full_dept (eng) Department of Signal Processing
department (cz) ZS
department (eng) ZS
full_dept Department of Signal Processing
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0108105
name1 Suzdaleva
name2 Evgenia
institution UTIA-B
full_dept (cz) Zpracování signálů
full_dept Department of Signal Processing
department (cz) ZS
department ZS
full_dept Department of Signal Processing
country RU
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2018/ZS/suzdaleva-0491344.pdf
cas_special
project
ARLID cav_un_auth*0321440
project_id GA15-03564S
agency GA ČR
abstract (eng) This chapter considers the problem of clustering non-Gaussian data with fixed bounds via recursive mixture estimation under the Bayesian methodology. Here a mixture of uniform distributions is taken, where individual clusters are described by mixture components. The mixture estimation algorithm is based on (i) the update of reproducible statistics of uniform components, (ii) the heuristic initialization via the method of moments, (iii) the non-trivial adaptive forgetting technique, (iv) the data-dependent dynamic pointer model.
RIV BB
FORD0 10000
FORD1 10100
FORD2 10103
reportyear 2019
num_of_auth 2
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0285514
confidential S
mrcbC83 RIV/67985556:_____/18:00491344!RIV19-AV0-67985556 192095190 Doplnění UT WOS a Scopus
mrcbC83 RIV/67985556:_____/18:00491344!RIV19-GA0-67985556 192084144 Doplnění UT WOS a Scopus
mrcbC86 3+4 Article Automation Control Systems|Computer Science Artificial Intelligence|Engineering Electrical Electronic
arlyear 2018
mrcbU14 85049685686 SCOPUS
mrcbU24 PUBMED
mrcbU34 000466552900015 WOS
mrcbU63 cav_un_epca*0491343 Practical Issues of Intelligent Innovations. Studies in Systems, Decision and Control Springer 2018 Cham 313 330 978-3-319-78436-6 Studies in Systems, Decision and Control 140
mrcbU67 340 Sgurev V.
mrcbU67 340 Jotsov V.
mrcbU67 340 Kacprzyk J.