bibtype M - Monography Chapter
ARLID 0491347
utime 20240103220248.2
mtime 20180724235959.9
SCOPUS 85049369508
DOI 10.1007/978-3-319-78931-6_3
title (primary) (eng) Mixture Initialization Based on Prior Data Visual Analysis
specification
book_pages 193
page_count 21 s.
media_type P
serial
ARLID cav_un_epca*0491346
ISBN 978-3-319-78930-9
title Intuitionistic Fuzziness and Other Intelligent Theories and Their Applications
page_num 29-49
publisher
place Cham
name Springer
year 2019
editor
name1 Hadjiski
name2 M.
editor
name1 Atanassov
name2 K.
keyword mixture initialisation
keyword mixture estimation
keyword prior data analysis
author (primary)
ARLID cav_un_auth*0108105
name1 Suzdaleva
name2 Evgenia
institution UTIA-B
full_dept (cz) Zpracování signálů
full_dept (eng) Department of Signal Processing
department (cz) ZS
department (eng) ZS
full_dept Department of Signal Processing
country RU
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101167
name1 Nagy
name2 Ivan
institution UTIA-B
full_dept (cz) Zpracování signálů
full_dept Department of Signal Processing
department (cz) ZS
department ZS
full_dept Department of Signal Processing
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2018/ZS/suzdaleva-0491347.pdf
cas_special
project
ARLID cav_un_auth*0321440
project_id GA15-03564S
agency GA ČR
abstract (eng) The initialization is known to be a critical task for running a mixture estimation algorithm. A majority of approaches existing in the literature are related to initialization of the expectation-maximization algorithm widely used in this area. This study focuses on the initialization of the recursive mixture estimation for the case of normal components, where the mentioned methods are not applicable. Its key part is a choice of the initial statistics of normal components.
RIV BB
FORD0 10000
FORD1 10100
FORD2 10103
reportyear 2020
num_of_auth 2
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0285513
confidential S
arlyear 2019
mrcbU14 85049369508 SCOPUS
mrcbU24 PUBMED
mrcbU34 WOS
mrcbU63 cav_un_epca*0491346 Intuitionistic Fuzziness and Other Intelligent Theories and Their Applications Springer 2019 Cham 29 49 978-3-319-78930-9 Studies in Computational Intelligence 757
mrcbU67 340 Hadjiski M.
mrcbU67 340 Atanassov K.