bibtype A - Abstract
ARLID 0491783
utime 20240103220258.3
mtime 20180726235959.9
title (primary) (eng) A comparison of robust nonlinear regression methods by statistical learning
specification
page_count 1 s.
serial
ARLID cav_un_epca*0491782
ISBN 978-88-61970-00-7
title ISNPS 2018. Book of Abstracts
page_num 42-42
publisher
place Salerno
year 2018
editor
name1 La Rocca
name2 M.
editor
name1 Liseo
name2 B.
editor
name1 Parella
name2 M. L.
editor
name1 Salmaso
name2 L.
editor
name1 Tardella
name2 L.
keyword metalearning
keyword robust estimation
keyword nonlinear regression
keyword nonlinear regression quantiles
keyword heteroscedasticity
author (primary)
ARLID cav_un_auth*0345793
name1 Kalina
name2 Jan
full_dept (cz) Stochastická informatika
full_dept (eng) Department of Stochastic Informatics
department (cz) SI
department (eng) SI
institution UTIA-B
full_dept Department of Stochastic Informatics
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0333704
name1 Peštová
name2 Barbora
full_dept (cz) Oddělení statistického modelování
full_dept Department of Statistical Modelling
institution UIVT-O
full_dept Department of Statistical Modelling
fullinstit Ústav informatiky AV ČR, v. v. i.
source
url https://drive.google.com/file/d/13Sqxpj5A0oHiNn4jLBGSUPpSmlYvFX-0/view
cas_special
abstract (eng) Various estimators for the standard nonlinear regression model are compared with a focus on methods which are robust to outlying measurements in the data. The main contribution is a metalearning study which has the aim to predict the most suitable estimator for a particular data set. Here, various versions of the nonlinear least weighted squares estimator are compared with nonlinear least squares, nonlinear least trimmed squares and a nonlinear regression median, where the last is a special case of nonlinear regression quantiles. The metalearning study is performed over a data base of 24 economic data sets. The nonlinear least weighted squares estimator is able to yield the best result for the most data sets. The metalearning study gives advice how to select appropriate weights for the nonlinear least weighted squares, particularly it reveals tests of normality and heteroscedasticity to play a crucial role in finding suitable weights.
action
ARLID cav_un_auth*0362682
name ISNPS 2018. Conference of the International Society for Nonparametric Statistics /4./
dates 20180611
place Salerno
country IT
mrcbC20-s 20180615
RIV BB
FORD0 10000
FORD1 10100
FORD2 10103
reportyear 2019
mrcbC52 4 O 4o 20231122143314.7
inst_support RVO:67985807
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0285411
confidential S
arlyear 2018
mrcbTft \nSoubory v repozitáři: a0491783.pdf
mrcbU14 SCOPUS
mrcbU24 PUBMED
mrcbU34 WOS
mrcbU63 cav_un_epca*0491782 ISNPS 2018. Book of Abstracts 2018 Salerno 42 42 978-88-61970-00-7
mrcbU67 340 La Rocca M.
mrcbU67 340 Liseo B.
mrcbU67 340 Parella M. L.
mrcbU67 340 Salmaso L.
mrcbU67 340 Tardella L.