| bibtype |
J -
Journal Article
|
| ARLID |
0491819 |
| utime |
20240103220301.8 |
| mtime |
20180727235959.9 |
| SCOPUS |
85049671436 |
| WOS |
000461580400009 |
| DOI |
10.1007/s00500-018-3369-5 |
| title
(primary) (eng) |
Toward a general frame semantics for modal many-valued logics |
| specification |
| page_count |
9 s. |
| media_type |
P |
|
| serial |
| ARLID |
cav_un_epca*0258368 |
| ISSN |
1432-7643 |
| title
|
Soft Computing |
| volume_id |
23 |
| volume |
7 (2019) |
| page_num |
2233-2241 |
| publisher |
|
|
| keyword |
Modal many-valued logics |
| keyword |
Mathematical fuzzy logic |
| keyword |
Neighborhood frames |
| keyword |
Kripke semantics |
| keyword |
General frames |
| author
(primary) |
| ARLID |
cav_un_auth*0100737 |
| name1 |
Cintula |
| name2 |
Petr |
| institution |
UIVT-O |
| full_dept (cz) |
Oddělení teoretické informatiky |
| full_dept (eng) |
Department of Theoretical Computer Science |
| full_dept |
Department of Theoretical Computer Science |
| fullinstit |
Ústav informatiky AV ČR, v. v. i. |
|
| author
|
| ARLID |
cav_un_auth*0362702 |
| name1 |
Menchón |
| name2 |
P. |
| country |
AR |
|
| author
|
| ARLID |
cav_un_auth*0293476 |
| name1 |
Noguera |
| name2 |
Carles |
| institution |
UTIA-B |
| full_dept (cz) |
Matematická teorie rozhodování |
| full_dept |
Department of Decision Making Theory |
| department (cz) |
MTR |
| department |
MTR |
| full_dept |
Department of Decision Making Theory |
| garant |
K |
| fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
| source |
|
| cas_special |
| project |
| ARLID |
cav_un_auth*0349495 |
| project_id |
GA17-04630S |
| agency |
GA ČR |
|
| abstract
(eng) |
Frame semantics, given by Kripke or neighborhood frames, do not give completeness theorems for all modal logics extending, respectively, K and E. Such shortcoming can be overcome by means of general frames, i.e., frames equipped with a collection of admissible sets of worlds (which is the range of possible valuations over such frame). We export this approach from the classical paradigm to modal many-valued logics by defining general A-frames over a given residuated lattice AA (i.e., the usual frames with a collection of admissible A-valued sets). We describe in detail the relation between general Kripke and neighborhood A-frames and prove that, if the logic of A is finitary, all extensions of the corresponding logic E of A are complete w.r.t. general neighborhood frames. Our work provides a new approach to the current research trend of generalizing relational semantics for non-classical modal logics to circumvent axiomatization problems. |
| RIV |
BA |
| FORD0 |
10000 |
| FORD1 |
10200 |
| FORD2 |
10201 |
| reportyear |
2020 |
| mrcbC47 |
UTIA-B 10000 10100 10101 |
| mrcbC52 |
4 A O 4a 4o 4a 20231122143315.9 |
| inst_support |
RVO:67985807 |
| inst_support |
RVO:67985556 |
| permalink |
http://hdl.handle.net/11104/0285436 |
| confidential |
S |
| mrcbC86 |
1* Article Biochemistry Molecular Biology|Chemistry Multidisciplinary |
| mrcbC91 |
C |
| mrcbT16-e |
COMPUTERSCIENCE.INTERDISCIPLINARYAPPLICATIONS|COMPUTERSCIENCE.ARTIFICIALINTELLIGENCE |
| mrcbT16-f |
2.988 |
| mrcbT16-g |
1.125 |
| mrcbT16-h |
3 |
| mrcbT16-i |
0.01198 |
| mrcbT16-j |
0.499 |
| mrcbT16-k |
8859 |
| mrcbT16-q |
120 |
| mrcbT16-s |
0.705 |
| mrcbT16-y |
40.95 |
| mrcbT16-x |
3.41 |
| mrcbT16-3 |
5282 |
| mrcbT16-4 |
Q2 |
| mrcbT16-5 |
2.638 |
| mrcbT16-6 |
893 |
| mrcbT16-7 |
Q2 |
| mrcbT16-B |
32.106 |
| mrcbT16-C |
63.5 |
| mrcbT16-D |
Q3 |
| mrcbT16-E |
Q4 |
| mrcbT16-M |
0.87 |
| mrcbT16-N |
Q2 |
| mrcbT16-P |
63.761 |
| arlyear |
2019 |
| mrcbTft |
\nSoubory v repozitáři: 0491819a2.pdf, a0491819prep.pdf, a0491819.pdf |
| mrcbU14 |
85049671436 SCOPUS |
| mrcbU24 |
PUBMED |
| mrcbU34 |
000461580400009 WOS |
| mrcbU63 |
cav_un_epca*0258368 Soft Computing 1432-7643 1433-7479 Roč. 23 č. 7 2019 2233 2241 Springer |
|