bibtype |
J -
Journal Article
|
ARLID |
0491819 |
utime |
20240103220301.8 |
mtime |
20180727235959.9 |
SCOPUS |
85049671436 |
WOS |
000461580400009 |
DOI |
10.1007/s00500-018-3369-5 |
title
(primary) (eng) |
Toward a general frame semantics for modal many-valued logics |
specification |
page_count |
9 s. |
media_type |
P |
|
serial |
ARLID |
cav_un_epca*0258368 |
ISSN |
1432-7643 |
title
|
Soft Computing |
volume_id |
23 |
volume |
7 (2019) |
page_num |
2233-2241 |
publisher |
|
|
keyword |
Modal many-valued logics |
keyword |
Mathematical fuzzy logic |
keyword |
Neighborhood frames |
keyword |
Kripke semantics |
keyword |
General frames |
author
(primary) |
ARLID |
cav_un_auth*0100737 |
name1 |
Cintula |
name2 |
Petr |
institution |
UIVT-O |
full_dept (cz) |
Oddělení teoretické informatiky |
full_dept (eng) |
Department of Theoretical Computer Science |
full_dept |
Department of Theoretical Computer Science |
fullinstit |
Ústav informatiky AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0362702 |
name1 |
Menchón |
name2 |
P. |
country |
AR |
|
author
|
ARLID |
cav_un_auth*0293476 |
name1 |
Noguera |
name2 |
Carles |
institution |
UTIA-B |
full_dept (cz) |
Matematická teorie rozhodování |
full_dept |
Department of Decision Making Theory |
department (cz) |
MTR |
department |
MTR |
full_dept |
Department of Decision Making Theory |
garant |
K |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
source |
|
cas_special |
project |
ARLID |
cav_un_auth*0349495 |
project_id |
GA17-04630S |
agency |
GA ČR |
|
abstract
(eng) |
Frame semantics, given by Kripke or neighborhood frames, do not give completeness theorems for all modal logics extending, respectively, K and E. Such shortcoming can be overcome by means of general frames, i.e., frames equipped with a collection of admissible sets of worlds (which is the range of possible valuations over such frame). We export this approach from the classical paradigm to modal many-valued logics by defining general A-frames over a given residuated lattice AA (i.e., the usual frames with a collection of admissible A-valued sets). We describe in detail the relation between general Kripke and neighborhood A-frames and prove that, if the logic of A is finitary, all extensions of the corresponding logic E of A are complete w.r.t. general neighborhood frames. Our work provides a new approach to the current research trend of generalizing relational semantics for non-classical modal logics to circumvent axiomatization problems. |
RIV |
BA |
FORD0 |
10000 |
FORD1 |
10200 |
FORD2 |
10201 |
reportyear |
2020 |
mrcbC47 |
UTIA-B 10000 10100 10101 |
mrcbC52 |
4 A O 4a 4o 4a 20231122143315.9 |
inst_support |
RVO:67985807 |
inst_support |
RVO:67985556 |
permalink |
http://hdl.handle.net/11104/0285436 |
confidential |
S |
mrcbC86 |
3+4 Article Computer Science Artificial Intelligence|Computer Science Interdisciplinary Applications |
mrcbC91 |
C |
mrcbT16-e |
COMPUTERSCIENCEARTIFICIALINTELLIGENCE|COMPUTERSCIENCEINTERDISCIPLINARYAPPLICATIONS |
mrcbT16-j |
0.499 |
mrcbT16-s |
0.705 |
mrcbT16-B |
32.106 |
mrcbT16-D |
Q3 |
mrcbT16-E |
Q2 |
arlyear |
2019 |
mrcbTft |
\nSoubory v repozitáři: 0491819a2.pdf, a0491819prep.pdf, a0491819.pdf |
mrcbU14 |
85049671436 SCOPUS |
mrcbU24 |
PUBMED |
mrcbU34 |
000461580400009 WOS |
mrcbU63 |
cav_un_epca*0258368 Soft Computing 1432-7643 1433-7479 Roč. 23 č. 7 2019 2233 2241 Springer |
|