| bibtype |
C -
Conference Paper (international conference)
|
| ARLID |
0491981 |
| utime |
20250112195927.8 |
| mtime |
20180806235959.9 |
| SCOPUS |
85049630574 |
| WOS |
000478664000007 |
| DOI |
10.1007/978-3-662-57669-4_7 |
| title
(primary) (eng) |
Lindenbaum and Pair Extension Lemma in Infinitary Logics |
| specification |
| page_count |
15 s. |
| media_type |
P |
|
| serial |
| ARLID |
cav_un_epca*0491980 |
| ISBN |
978-3-662-57668-7 |
| ISSN |
0302-9743 |
| title
|
Logic, Language, Information and Computation |
| page_num |
130-144 |
| publisher |
| place |
Berlin |
| name |
Springer |
| year |
2018 |
|
| editor |
|
| editor |
| name1 |
de Queiroz |
| name2 |
R. |
|
| editor |
|
|
| keyword |
Lindenbaum lemma |
| keyword |
Pair extension lemma |
| keyword |
Infinitary logic |
| keyword |
Infinitary deduction rule |
| keyword |
Strong disjunction |
| keyword |
Prime theory |
| author
(primary) |
| ARLID |
cav_un_auth*0218529 |
| name1 |
Bílková |
| name2 |
Marta |
| institution |
UIVT-O |
| full_dept (cz) |
Oddělení teoretické informatiky |
| full_dept (eng) |
Department of Theoretical Computer Science |
| full_dept |
Department of Theoretical Computer Science |
| fullinstit |
Ústav informatiky AV ČR, v. v. i. |
|
| author
|
| ARLID |
cav_un_auth*0100737 |
| name1 |
Cintula |
| name2 |
Petr |
| institution |
UIVT-O |
| full_dept (cz) |
Oddělení teoretické informatiky |
| full_dept |
Department of Theoretical Computer Science |
| full_dept |
Department of Theoretical Computer Science |
| garant |
K |
| fullinstit |
Ústav informatiky AV ČR, v. v. i. |
|
| author
|
| ARLID |
cav_un_auth*0341114 |
| name1 |
Lávička |
| name2 |
Tomáš |
| institution |
UTIA-B |
| full_dept (cz) |
Matematická teorie rozhodování |
| full_dept |
Department of Decision Making Theory |
| department (cz) |
MTR |
| department |
MTR |
| full_dept |
Department of Decision Making Theory |
| country |
CZ |
| fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
| cas_special |
| project |
| ARLID |
cav_un_auth*0349495 |
| project_id |
GA17-04630S |
| agency |
GA ČR |
|
| project |
| ARLID |
cav_un_auth*0348385 |
| project_id |
GC16-07954J |
| agency |
GA ČR |
| country |
CZ |
|
| project |
| ARLID |
cav_un_auth*0348811 |
| project_id |
JSPS-16-08 |
| agency |
AV ČR |
| country |
CZ |
| country |
JP |
|
| abstract
(eng) |
The abstract Lindenbaum lemma is a crucial result in algebraic logic saying that the prime theories form a basis of the closure systems of all theories of an arbitrary given logic. Its usual formulation is however limited to finitary logics, i.e., logics with Hilbert-style axiomatization using finitary rules only. In this contribution, we extend its scope to all logics with a countable axiomatization and a well-behaved disjunction connective. We also relate Lindenbaum lemma to the Pair extension lemma, other well-known result with many applications mainly in the theory of non-classical modal logics. While a restricted form of this lemma (to pairs with finite right-hand side) is, in our context, equivalent to Lindenbaum lemma, we show a perhaps surprising result that in full strength it holds for finitary logics only. Finally we provide examples demonstrating both limitations and applications of our results. |
| action |
| ARLID |
cav_un_auth*0362872 |
| name |
WoLLIC 2018. International Workshop on Logic, Language, Information and Computation /25./ |
| dates |
20180724 |
| place |
Bogotá |
| country |
CO |
| mrcbC20-s |
20180727 |
|
| RIV |
BA |
| FORD0 |
10000 |
| FORD1 |
10200 |
| FORD2 |
10201 |
| reportyear |
2019 |
| mrcbC47 |
UTIA-B 10000 10100 10101 |
| mrcbC52 |
4 E R 4e 4r a 20231122143320.7 A 20250112195927.7 |
| mrcbC55 |
UTIA-B BA |
| inst_support |
RVO:67985807 |
| inst_support |
RVO:67985556 |
| permalink |
http://hdl.handle.net/11104/0285566 |
| confidential |
S |
| mrcbC86 |
3+4 Proceedings Paper Computer Science Artificial Intelligence|Computer Science Theory Methods |
| mrcbT16-s |
0.339 |
| mrcbT16-4 |
Q2 |
| mrcbT16-E |
Q2 |
| arlyear |
2018 |
| mrcbTft |
\nSoubory v repozitáři: dodatecne_citace_k_0554811.pdf, a0491981prep.pdf, a0491981.pdf |
| mrcbU14 |
85049630574 SCOPUS |
| mrcbU24 |
PUBMED |
| mrcbU34 |
000478664000007 WOS |
| mrcbU63 |
cav_un_epca*0491980 Logic, Language, Information and Computation Springer 2018 Berlin 130 144 978-3-662-57668-7 Lecture Notes on Computer Science 10944 0302-9743 |
| mrcbU67 |
340 Moss L. S. |
| mrcbU67 |
340 de Queiroz R. |
| mrcbU67 |
340 Martinez M. |
|