bibtype C - Conference Paper (international conference)
ARLID 0492498
utime 20240103220353.9
mtime 20180827235959.9
SCOPUS 85052215669
DOI 10.1007/978-3-319-97785-0_3
title (primary) (eng) Rotationally Invariant Bark Recognition
specification
page_count 10 s.
media_type P
serial
ARLID cav_un_epca*0492497
ISBN 978-3-319-97784-3
ISSN 0302-9743
title Structural, Syntactic, and Statistical Pattern Recognition : Joint IAPR International Workshop, S+SSPR 2018
page_num 22-31
publisher
place Cham
name Springer Nature Switzerland AG
year 2018
editor
name1 Bai
name2 X.
editor
name1 Hancock
name2 E.
editor
name1 Ho
name2 T.
editor
name1 Wilson
name2 R.
editor
name1 Biggio
name2 B.
editor
name1 Robles-Kelly
name2 A.
keyword Bark recognition
keyword Tree taxonomy clasification
keyword Spiral Markov random field model
author (primary)
ARLID cav_un_auth*0286710
name1 Remeš
name2 Václav
full_dept (cz) Rozpoznávání obrazu
full_dept (eng) Department of Pattern Recognition
department (cz) RO
department (eng) RO
institution UTIA-B
full_dept Department of Pattern Recognition
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101093
name1 Haindl
name2 Michal
full_dept (cz) Rozpoznávání obrazu
full_dept Department of Pattern Recognition
department (cz) RO
department RO
institution UTIA-B
full_dept Department of Pattern Recognition
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2018/RO/haindl-0492498.pdf
cas_special
abstract (eng) An efficient bark recognition method based on a novel wide-sense Markov spiral model textural representation is presented. Unlike the alternative bark recognition methods based on various gray-scale discriminative textural descriptions, we benefit from fully descriptive color, rotationally invariant bark texture representation. The proposed method significantly outperforms the state-of-the-art bark recognition approaches in terms of the classification accuracy.
action
ARLID cav_un_auth*0363300
name IAPR Joint International Workshop on Statistical Techniques in Pattern Recognition and Structural and Syntactic Pattern Recognition
dates 20180817
mrcbC20-s 20180819
place Beijing
country CN
RIV BD
FORD0 20000
FORD1 20200
FORD2 20205
reportyear 2019
num_of_auth 2
presentation_type PO
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0286554
confidential S
article_num 3
mrcbT16-s 0.339
mrcbT16-4 Q2
mrcbT16-E Q2
arlyear 2018
mrcbU14 85052215669 SCOPUS
mrcbU24 PUBMED
mrcbU34 WOS
mrcbU63 cav_un_epca*0492497 Structural, Syntactic, and Statistical Pattern Recognition : Joint IAPR International Workshop, S+SSPR 2018 978-3-319-97784-3 0302-9743 22 31 Cham Springer Nature Switzerland AG 2018 Lecture Notes in Computer Science 11004
mrcbU67 340 Bai X.
mrcbU67 340 Hancock E.
mrcbU67 340 Ho T.
mrcbU67 340 Wilson R.
mrcbU67 340 Biggio B.
mrcbU67 340 Robles-Kelly A.