bibtype |
C -
Conference Paper (international conference)
|
ARLID |
0492498 |
utime |
20240103220353.9 |
mtime |
20180827235959.9 |
SCOPUS |
85052215669 |
DOI |
10.1007/978-3-319-97785-0_3 |
title
(primary) (eng) |
Rotationally Invariant Bark Recognition |
specification |
page_count |
10 s. |
media_type |
P |
|
serial |
ARLID |
cav_un_epca*0492497 |
ISBN |
978-3-319-97784-3 |
ISSN |
0302-9743 |
title
|
Structural, Syntactic, and Statistical Pattern Recognition : Joint IAPR International Workshop, S+SSPR 2018 |
page_num |
22-31 |
publisher |
place |
Cham |
name |
Springer Nature Switzerland AG |
year |
2018 |
|
editor |
|
editor |
|
editor |
|
editor |
|
editor |
|
editor |
name1 |
Robles-Kelly |
name2 |
A. |
|
|
keyword |
Bark recognition |
keyword |
Tree taxonomy clasification |
keyword |
Spiral Markov random field model |
author
(primary) |
ARLID |
cav_un_auth*0286710 |
name1 |
Remeš |
name2 |
Václav |
full_dept (cz) |
Rozpoznávání obrazu |
full_dept (eng) |
Department of Pattern Recognition |
department (cz) |
RO |
department (eng) |
RO |
institution |
UTIA-B |
full_dept |
Department of Pattern Recognition |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0101093 |
name1 |
Haindl |
name2 |
Michal |
full_dept (cz) |
Rozpoznávání obrazu |
full_dept |
Department of Pattern Recognition |
department (cz) |
RO |
department |
RO |
institution |
UTIA-B |
full_dept |
Department of Pattern Recognition |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
source |
|
cas_special |
abstract
(eng) |
An efficient bark recognition method based on a novel wide-sense Markov spiral model textural representation is presented. Unlike the alternative bark recognition methods based on various gray-scale discriminative textural descriptions, we benefit from fully descriptive color, rotationally invariant bark texture representation. The proposed method significantly outperforms the state-of-the-art bark recognition approaches in terms of the classification accuracy. |
action |
ARLID |
cav_un_auth*0363300 |
name |
IAPR Joint International Workshop on Statistical Techniques in Pattern Recognition and Structural and Syntactic Pattern Recognition |
dates |
20180817 |
mrcbC20-s |
20180819 |
place |
Beijing |
country |
CN |
|
RIV |
BD |
FORD0 |
20000 |
FORD1 |
20200 |
FORD2 |
20205 |
reportyear |
2019 |
num_of_auth |
2 |
presentation_type |
PO |
inst_support |
RVO:67985556 |
permalink |
http://hdl.handle.net/11104/0286554 |
confidential |
S |
article_num |
3 |
mrcbT16-s |
0.339 |
mrcbT16-4 |
Q2 |
mrcbT16-E |
Q2 |
arlyear |
2018 |
mrcbU14 |
85052215669 SCOPUS |
mrcbU24 |
PUBMED |
mrcbU34 |
WOS |
mrcbU63 |
cav_un_epca*0492497 Structural, Syntactic, and Statistical Pattern Recognition : Joint IAPR International Workshop, S+SSPR 2018 978-3-319-97784-3 0302-9743 22 31 Cham Springer Nature Switzerland AG 2018 Lecture Notes in Computer Science 11004 |
mrcbU67 |
340 Bai X. |
mrcbU67 |
340 Hancock E. |
mrcbU67 |
340 Ho T. |
mrcbU67 |
340 Wilson R. |
mrcbU67 |
340 Biggio B. |
mrcbU67 |
340 Robles-Kelly A. |
|