bibtype C - Conference Paper (international conference)
ARLID 0492503
utime 20240103220354.3
mtime 20180827235959.9
SCOPUS 85059755327
WOS 000455146800151
DOI 10.1109/ICPR.2018.8545370
title (primary) (eng) Dynamic Texture Similarity Criterion
specification
page_count 6 s.
media_type P
serial
ARLID cav_un_epca*0492502
ISBN 978-1-5386-3787-6
title The 24th International Conference on Pattern Recognition (ICPR 2018)
page_num 904-909
publisher
place New York
name IEEE
year 2018
keyword Dynamic texture
keyword Similarity criterion
author (primary)
ARLID cav_un_auth*0295135
name1 Richtr
name2 Radek
full_dept (cz) Rozpoznávání obrazu
full_dept (eng) Department of Pattern Recognition
department (cz) RO
department (eng) RO
institution UTIA-B
full_dept Department of Pattern Recognition
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101093
name1 Haindl
name2 Michal
full_dept (cz) Rozpoznávání obrazu
full_dept Department of Pattern Recognition
department (cz) RO
department RO
institution UTIA-B
full_dept Department of Pattern Recognition
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2018/RO/haindl-0492503.pdf
cas_special
abstract (eng) Dynamic texture similarity ranking is a challenging and still unsolved problem. Evaluation of how well are various dynamic textures similar to humans perception viewis extremely difficult even for static textures and requires tedious psycho-physical experiments. Human perception principles are largely not understood yet and the dynamic texture perception is further complicated with a distinct way of perceiving spatial and temporal domains, which complicates any similarity criterion definition. We propose a novel dynamic texture criterion based on the Fourier transformation and properties of dynamic texture spatiotemporal frequencies. The presented criterion correlates well with performed psycho-physical tests while maintaining sufficient diversity and descriptiveness.
action
ARLID cav_un_auth*0363310
name The 24th International Conference on Pattern Recognition (ICPR 2018)
dates 20180820
mrcbC20-s 20180824
place Beijing
country CN
RIV BD
FORD0 20000
FORD1 20200
FORD2 20205
reportyear 2019
num_of_auth 2
presentation_type PO
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0286555
confidential S
mrcbC86 3+4 Proceedings Paper Computer Science Artificial Intelligence
arlyear 2018
mrcbU14 85059755327 SCOPUS
mrcbU24 PUBMED
mrcbU34 000455146800151 WOS
mrcbU63 cav_un_epca*0492502 The 24th International Conference on Pattern Recognition (ICPR 2018) 978-1-5386-3787-6 904 909 New York IEEE 2018