bibtype C - Conference Paper (international conference)
ARLID 0492879
utime 20240111141005.5
mtime 20180905235959.9
SCOPUS 85048543885
DOI 10.1007/978-3-319-93764-9_16
title (primary) (eng) Orthogonally-Constrained Extraction of Independent Non-Gaussian Component from Non-Gaussian Background Without ICA
specification
page_count 10 s.
media_type E
serial
ARLID cav_un_epca*0492878
ISBN 978-3-319-93763-2
ISSN 0302-9743
title Latent Variable Analysis and Signal Separation
page_num 161-170
publisher
place Cham
name Springer
year 2018
editor
name1 Deville
name2 Yannick
editor
name1 Gannot
name2 Sharon
editor
name1 Mason
name2 Russell
editor
name1 Plumbley
name2 Mark D.
editor
name1 Ward
name2 Dominic
keyword Independent Component Analysis
keyword Blind source separation
keyword blind source extraction
author (primary)
ARLID cav_un_auth*0230113
name1 Koldovský
name2 Z.
country CZ
author
ARLID cav_un_auth*0101212
full_dept (cz) Stochastická informatika
full_dept Department of Stochastic Informatics
department (cz) SI
department SI
full_dept Department of Stochastic Informatics
name1 Tichavský
name2 Petr
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0363725
name1 Ono
name2 N.
country JP
source
url http://library.utia.cas.cz/separaty/2018/SI/tichavsky-0492879.pdf
source_size 282 kB
cas_special
project
project_id GA17-00902S
agency GA ČR
ARLID cav_un_auth*0345929
abstract (eng) We propose a new algorithm for Independent Component Extraction that extracts one non-Gaussian component and is capable to exploit the non-Gaussianity of background signals without decomposing them into independent components. The algorithm is suitable for situations when the signal to be extracted is determined through initialization, it shows an extra stable convergence when the target component is dominant. In simulations, the proposed method is compared with Natural Gradient and One-unit FastICA, and it yields improved results in terms of the Signal-to-Interference ratio and the number of successful extractions.
action
ARLID cav_un_auth*0363587
name Latent Variable Analysis and Signal Separation
dates 20180702
place Guilford
country GB
mrcbC20-s 20180705
RIV BB
FORD0 10000
FORD1 10100
FORD2 10103
reportyear 2019
num_of_auth 3
presentation_type PR
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0286552
confidential S
mrcbT16-s 0.339
mrcbT16-4 Q2
mrcbT16-E Q2
arlyear 2018
mrcbU14 85048543885 SCOPUS
mrcbU24 PUBMED
mrcbU34 WOS
mrcbU56 282 kB
mrcbU63 cav_un_epca*0492878 Latent Variable Analysis and Signal Separation 978-3-319-93763-2 0302-9743 1611-3349 161 170 Cham Springer 2018 Lecture Notes in Computer Science 10891
mrcbU67 340 Deville Yannick
mrcbU67 340 Gannot Sharon
mrcbU67 340 Mason Russell
mrcbU67 340 Plumbley Mark D.
mrcbU67 340 Ward Dominic