bibtype |
J -
Journal Article
|
ARLID |
0493763 |
utime |
20240903121019.5 |
mtime |
20180926235959.9 |
SCOPUS |
85090693948 |
WOS |
000557809200002 |
title
(primary) (eng) |
Parametric Elliptical Regression Quantiles |
specification |
page_count |
27 s. |
media_type |
P |
|
serial |
ARLID |
cav_un_epca*0362539 |
ISSN |
1645-6726 |
title
|
Revstat Statistical Journal |
volume_id |
18 |
volume |
3 (2020) |
page_num |
257-280 |
publisher |
|
|
keyword |
multiple-output regression |
keyword |
quantile regression |
keyword |
nonlinear regression |
keyword |
elliptical quantile |
author
(primary) |
ARLID |
cav_un_auth*0213091 |
name1 |
Hlubinka |
name2 |
D. |
country |
CZ |
|
author
|
ARLID |
cav_un_auth*0266474 |
name1 |
Šiman |
name2 |
Miroslav |
institution |
UTIA-B |
full_dept (cz) |
Stochastická informatika |
full_dept |
Department of Stochastic Informatics |
department (cz) |
SI |
department |
SI |
full_dept |
Department of Stochastic Informatics |
country |
CZ |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
source |
|
source |
|
cas_special |
project |
project_id |
GA17-07384S |
agency |
GA ČR |
ARLID |
cav_un_auth*0345381 |
|
project |
project_id |
GA14-07234S |
agency |
GA ČR |
ARLID |
cav_un_auth*0307008 |
|
abstract
(eng) |
The article extends linear and nonlinear quantile regression to the case of vector responses by generalizing multivariate elliptical quantiles to a regression context. In particular, it introduces parametric elliptical quantile regression in a general nonlinear multivariate heteroscedastic framework and discusses, investigates, and illustrates the new method in some detail, including basic properties, various parametrizations, possible heteroscedastic patterns, related computational issues, model validation, and a real biometric data example. The method seems suitable for multi-response regression models with symmetric errors, especially if the dimension of responses is less than ten and if the right parametrization of the model follows from the context. |
result_subspec |
WOS |
RIV |
BA |
FORD0 |
10000 |
FORD1 |
10100 |
FORD2 |
10101 |
reportyear |
2021 |
inst_support |
RVO:67985556 |
permalink |
http://hdl.handle.net/11104/0289349 |
cooperation |
ARLID |
cav_un_auth*0296001 |
name |
Univerzita Karlova v Praze, Matematicko-fyzikální fakulta |
institution |
MFF UK |
country |
CZ |
|
confidential |
S |
mrcbC86 |
3+4 Article Statistics Probability |
mrcbC91 |
A |
mrcbT16-e |
STATISTICSPROBABILITY |
mrcbT16-i |
0.00071 |
mrcbT16-j |
0.403 |
mrcbT16-s |
0.538 |
mrcbT16-B |
16.716 |
mrcbT16-D |
Q4 |
mrcbT16-E |
Q3 |
arlyear |
2020 |
mrcbU14 |
85090693948 SCOPUS |
mrcbU24 |
PUBMED |
mrcbU34 |
000557809200002 WOS |
mrcbU63 |
cav_un_epca*0362539 Revstat Statistical Journal 1645-6726 2183-0371 Roč. 18 č. 3 2020 257 280 INE |
|