bibtype J - Journal Article
ARLID 0493763
utime 20240903121019.5
mtime 20180926235959.9
SCOPUS 85090693948
WOS 000557809200002
title (primary) (eng) Parametric Elliptical Regression Quantiles
specification
page_count 27 s.
media_type P
serial
ARLID cav_un_epca*0362539
ISSN 1645-6726
title Revstat Statistical Journal
volume_id 18
volume 3 (2020)
page_num 257-280
publisher
name INE
keyword multiple-output regression
keyword quantile regression
keyword nonlinear regression
keyword elliptical quantile
author (primary)
ARLID cav_un_auth*0213091
name1 Hlubinka
name2 D.
country CZ
author
ARLID cav_un_auth*0266474
name1 Šiman
name2 Miroslav
institution UTIA-B
full_dept (cz) Stochastická informatika
full_dept Department of Stochastic Informatics
department (cz) SI
department SI
full_dept Department of Stochastic Informatics
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2018/SI/siman-0493763.pdf
source
url https://www.ine.pt/revstat/pdf/ONPARAMETRICELLIPTICALREGRESSIONQUANTILES.pdf
cas_special
project
project_id GA17-07384S
agency GA ČR
ARLID cav_un_auth*0345381
project
project_id GA14-07234S
agency GA ČR
ARLID cav_un_auth*0307008
abstract (eng) The article extends linear and nonlinear quantile regression to the case of vector responses by generalizing multivariate elliptical quantiles to a regression context. In particular, it introduces parametric elliptical quantile regression in a general nonlinear multivariate heteroscedastic framework and discusses, investigates, and illustrates the new method in some detail, including basic properties, various parametrizations, possible heteroscedastic patterns, related computational issues, model validation, and a real biometric data example. The method seems suitable for multi-response regression models with symmetric errors, especially if the dimension of responses is less than ten and if the right parametrization of the model follows from the context.
result_subspec WOS
RIV BA
FORD0 10000
FORD1 10100
FORD2 10101
reportyear 2021
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0289349
cooperation
ARLID cav_un_auth*0296001
name Univerzita Karlova v Praze, Matematicko-fyzikální fakulta
institution MFF UK
country CZ
confidential S
mrcbC86 3+4 Article Statistics Probability
mrcbC91 A
mrcbT16-e STATISTICSPROBABILITY
mrcbT16-i 0.00071
mrcbT16-j 0.403
mrcbT16-s 0.538
mrcbT16-B 16.716
mrcbT16-D Q4
mrcbT16-E Q3
arlyear 2020
mrcbU14 85090693948 SCOPUS
mrcbU24 PUBMED
mrcbU34 000557809200002 WOS
mrcbU63 cav_un_epca*0362539 Revstat Statistical Journal 1645-6726 2183-0371 Roč. 18 č. 3 2020 257 280 INE