bibtype J - Journal Article
ARLID 0497453
utime 20240903170640.6
mtime 20181203235959.9
SCOPUS 85064214075
WOS 000455560300007
DOI 10.14736/kyb-2018-5-0978
title (primary) (eng) Region of Interest Contrast Measures
specification
page_count 13 s.
serial
ARLID cav_un_epca*0297163
ISSN 0023-5954
title Kybernetika
volume_id 54
volume 5 (2018)
page_num 978-990
publisher
name Ústav teorie informace a automatizace AV ČR, v. v. i.
keyword contrast measures
keyword image enhancement
keyword enhancement quality measures
keyword medical image enhancement
author (primary)
ARLID cav_un_auth*0286710
name1 Remeš
name2 Václav
institution UTIA-B
full_dept (cz) Rozpoznávání obrazu
full_dept (eng) Department of Pattern Recognition
department (cz) RO
department (eng) RO
full_dept Department of Pattern Recognition
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101093
name1 Haindl
name2 Michal
institution UTIA-B
full_dept (cz) Rozpoznávání obrazu
full_dept Department of Pattern Recognition
department (cz) RO
department RO
full_dept Department of Pattern Recognition
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2018/RO/remes-0497453.pdf
cas_special
abstract (eng) A survey of local image contrast measures is presented, and a new contrast measure for measuring the local contrast of regions of interest is proposed. The measures validation is based on the gradual objective contrast decreasing on medical test images in both grayscale and color. The performance of the eleven most frequented contrast measures is mutually compared, and their robustness to different types of image degradation is analyzed. Since the contrast measures can be both global, regional and local pixelwise, a simple way of adapting the contrast measures for regions of interest is proposed.
result_subspec WOS
RIV BD
FORD0 20000
FORD1 20200
FORD2 20202
reportyear 2019
num_of_auth 2
mrcbC52 4 A hod 4ah 20231122143626.3
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0290645
mrcbC64 1 Department of Pattern Recognition UTIA-B 10201 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
confidential S
article_num 4749
mrcbC86 3+4 Article Computer Science Cybernetics
mrcbT16-e COMPUTERSCIENCECYBERNETICS
mrcbT16-j 0.174
mrcbT16-s 0.268
mrcbT16-B 15.991
mrcbT16-D Q4
mrcbT16-E Q3
arlyear 2018
mrcbTft \nSoubory v repozitáři: remes-0497453.pdf
mrcbU14 85064214075 SCOPUS
mrcbU24 PUBMED
mrcbU34 000455560300007 WOS
mrcbU63 cav_un_epca*0297163 Kybernetika 0023-5954 Roč. 54 č. 5 2018 978 990 Ústav teorie informace a automatizace AV ČR, v. v. i.