bibtype M - Monography Chapter
ARLID 0497831
utime 20240103221057.7
mtime 20181210235959.9
SCOPUS 85061142387
title (primary) (eng) A Statistical Review of the MNIST Benchmark Data Problem
specification
book_pages 272
page_count 19 s.
media_type P
serial
ARLID cav_un_epca*0497830
ISBN 978-1-53614-429-1
title Advances in Pattern Recognition Research
part_title A Statistical Review of the MNIST Benchmark Data Problem
page_num 172-193
publisher
place New York
name Nova Science Publishers, Inc.
year 2018
editor
name1 Lu
name2 T.
editor
name1 Chao
name2 T.H.
keyword MNIST benchmark
keyword multivariate Bernoulli mixtures
keyword EM algorithm
author (primary)
ARLID cav_un_auth*0101091
full_dept Department of Pattern Recognition
share 50
name1 Grim
name2 Jiří
institution UTIA-B
full_dept (cz) Rozpoznávání obrazu
full_dept (eng) Department of Pattern Recognition
department (cz) RO
department (eng) RO
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101197
full_dept Department of Pattern Recognition
share 50
name1 Somol
name2 Petr
institution UTIA-B
full_dept (cz) Rozpoznávání obrazu
full_dept Department of Pattern Recognition
department (cz) RO
department RO
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2018/RO/grim-0497831.pdf
cas_special
project
ARLID cav_un_auth*0347019
project_id GA17-18407S
agency GA ČR
abstract (eng) The recognition of MNIST numerals is discussed as a benchmark problem. Applying the probabilistic neural networks to MNIST data we have found that the training and test set have slightly different statistical properties with negative consequences for classifier performance. We assume that the frequently used extension of MNIST training data by distorted patterns improves the recognition accuracy by creating images similar to the atypical test set numerals. In this way the benchmark experiments may be influenced by the external knowledge about the hand-written digits and the comparative value of the benchmark becomes more or less limited to recognition of MNIST numerals. As a more generally applicable benchmark model we propose recognition of artificial binary patterns generated on a chessboard by random moves of the pieces rook and knight.
RIV IN
FORD0 10000
FORD1 10200
FORD2 10201
reportyear 2019
num_of_auth 2
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0290648
confidential S
arlyear 2018
mrcbU14 85061142387 SCOPUS
mrcbU24 PUBMED
mrcbU34 WOS
mrcbU63 cav_un_epca*0497830 Advances in Pattern Recognition Research A Statistical Review of the MNIST Benchmark Data Problem Nova Science Publishers, Inc. 2018 New York 172 193 978-1-53614-429-1
mrcbU67 340 Lu T.
mrcbU67 340 Chao T.H.