bibtype J - Journal Article
ARLID 0500658
utime 20240103221447.0
mtime 20190129235959.9
SCOPUS 85060729194
WOS 000456723400001
DOI 10.1186/s13634-018-0598-9
title (primary) (eng) Orthogonality is superiority in piecewise-polynomial signal segmentation and denoising
specification
page_count 15 s.
media_type E
serial
ARLID cav_un_epca*0308598
ISSN 1687-6180
title EURASIP Journal on Advances in Signal Processing
volume_id 2019
publisher
name Springer
keyword Signal segmentation
keyword Signal smoothing
keyword Signal approximation
author (primary)
ARLID cav_un_auth*0371530
name1 Novosadová
name2 M.
country CZ
author
ARLID cav_un_auth*0298515
name1 Rajmic
name2 P.
country CZ
author
ARLID cav_un_auth*0108377
name1 Šorel
name2 Michal
full_dept (cz) Zpracování obrazové informace
full_dept Department of Image Processing
department (cz) ZOI
department ZOI
institution UTIA-B
full_dept Department of Image Processing
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2019/ZOI/sorel-0500658.pdf
source
url https://asp-eurasipjournals.springeropen.com/articles/10.1186/s13634-018-0598-9
cas_special
project
ARLID cav_un_auth*0338628
project_id GA16-13830S
agency GA ČR
country CZ
abstract (eng) Segmentation and denoising of signals often rely on the polynomial model which assumes that every segment is a polynomial of a certain degree and that the segments are modeled independently of each other. Segment borders (breakpoints) correspond to positions in the signal where the model changes its polynomial representation. Several signal denoising methods successfully combine the polynomial assumption with sparsity. In this work, we follow on this and show that using orthogonal polynomials instead of other systems in the model is beneficial when segmenting signals corrupted by noise. The switch to orthogonal bases brings better resolving of the breakpoints, removes the need for including additional parameters and their tuning, and brings numerical stability. Last but not the least, it comes for free!
result_subspec WOS
RIV JD
FORD0 20000
FORD1 20200
FORD2 20206
reportyear 2020
num_of_auth 3
mrcbC52 4 A hod 4ah 20231122143800.0
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0293326
mrcbC61 1
cooperation
ARLID cav_un_auth*0314450
name Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií
mrcbC64 1 Department of Image Processing UTIA-B 10200 COMPUTER SCIENCE, THEORY & METHODS
confidential S
article_num 6
mrcbC86 3+4 Article Engineering Electrical Electronic
mrcbC91 A
mrcbT16-e ENGINEERINGELECTRICALELECTRONIC
mrcbT16-j 0.384
mrcbT16-s 0.383
mrcbT16-B 27.424
mrcbT16-D Q3
mrcbT16-E Q3
arlyear 2019
mrcbTft \nSoubory v repozitáři: sorel-0500658.pdf
mrcbU14 85060729194 SCOPUS
mrcbU24 PUBMED
mrcbU34 000456723400001 WOS
mrcbU63 cav_un_epca*0308598 EURASIP Journal on Advances in Signal Processing 1687-6180 1687-6180 Roč. 2019 č. 1 2019 Springer