bibtype |
J -
Journal Article
|
ARLID |
0503559 |
utime |
20240103221852.6 |
mtime |
20190324235959.9 |
WOS |
000461783800007 |
SCOPUS |
85055561080 |
DOI |
10.1080/07362994.2018.1524304 |
title
(primary) (eng) |
Support of solutions of stochastic differential equations in exponential Besov-Orlicz spaces |
specification |
page_count |
16 s. |
media_type |
P |
|
serial |
ARLID |
cav_un_epca*0255142 |
ISSN |
0736-2994 |
title
|
Stochastic Analysis and Applications |
volume_id |
36 |
volume |
6 (2018) |
page_num |
1037-1052 |
publisher |
|
|
keyword |
Stochastic differential equation |
keyword |
topological support |
keyword |
Besov-Orlicz space |
author
(primary) |
ARLID |
cav_un_auth*0260292 |
full_dept (cz) |
Stochastická informatika |
full_dept (eng) |
Department of Stochastic Informatics |
department (cz) |
SI |
department (eng) |
SI |
full_dept |
Department of Stochastic Informatics |
name1 |
Ondreját |
name2 |
Martin |
institution |
UTIA-B |
country |
CZ |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0373946 |
full_dept (cz) |
Stochastická informatika |
full_dept |
Department of Stochastic Informatics |
department (cz) |
SI |
department |
SI |
name1 |
Šimon |
name2 |
Prokop |
institution |
UTIA-B |
country |
CZ |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0219359 |
full_dept (cz) |
Stochastická informatika |
full_dept |
Department of Stochastic Informatics |
department (cz) |
SI |
department |
SI |
full_dept |
Department of Stochastic Informatics |
name1 |
Kupsa |
name2 |
Michal |
institution |
UTIA-B |
country |
CZ |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
source |
|
cas_special |
project |
ARLID |
cav_un_auth*0321649 |
project_id |
GA15-08819S |
agency |
GA ČR |
country |
CZ |
|
abstract
(eng) |
The Besov-Orlicz space with the modulus being the square root, the parameter "q" being infinity and with the Young function for the Orlicz norm being the exponential of the square, is currently the smallest known classical function space to which paths of the Wiener process belong almost surely. We consider stochastic differential equations with no global growth condition on the non-linearities and we describe the topological support of the laws of trajectories of the solutions in every Polish subspace of continuous functions into which this Besov-Orlicz space is embedded compactly. |
result_subspec |
WOS |
RIV |
BA |
FORD0 |
10000 |
FORD1 |
10100 |
FORD2 |
10103 |
reportyear |
2019 |
num_of_auth |
3 |
mrcbC52 |
4 A hod 4ah 20231122143922.4 |
inst_support |
RVO:67985556 |
permalink |
http://hdl.handle.net/11104/0295382 |
mrcbC64 |
1 Department of Stochastic Informatics UTIA-B 10103 STATISTICS & PROBABILITY |
confidential |
S |
mrcbC86 |
2 Article Mathematics Applied|Statistics Probability |
mrcbT16-e |
MATHEMATICSAPPLIED|STATISTICSPROBABILITY |
mrcbT16-j |
0.48 |
mrcbT16-s |
0.552 |
mrcbT16-B |
30.313 |
mrcbT16-D |
Q3 |
mrcbT16-E |
Q3 |
arlyear |
2018 |
mrcbTft |
\nSoubory v repozitáři: ondrejat-0503559.pdf |
mrcbU14 |
85055561080 SCOPUS |
mrcbU24 |
PUBMED |
mrcbU34 |
000461783800007 WOS |
mrcbU63 |
cav_un_epca*0255142 Stochastic Analysis and Applications 0736-2994 1532-9356 Roč. 36 č. 6 2018 1037 1052 Taylor & Francis |
|