bibtype |
M -
Monography Chapter
|
ARLID |
0504124 |
utime |
20240111141018.4 |
mtime |
20190423235959.9 |
SCOPUS |
85065472276 |
WOS |
000493283300034 |
DOI |
10.1007/978-3-030-11292-9_34 |
title
(primary) (eng) |
Practical Initialization of Recursive Mixture-Based Clustering for Non-negative Data |
specification |
page_count |
19 s. |
book_pages |
812 |
media_type |
P |
|
serial |
ARLID |
cav_un_epca*0504123 |
ISBN |
978-3-030-11292-9 |
title
|
Informatics in Control, Automation and Robotics. ICINCO 2017. |
part_title |
495 |
page_num |
679-698 |
publisher |
place |
Cham |
name |
Springer |
year |
2020 |
|
editor |
|
editor |
|
|
keyword |
Mixture-based clustering |
keyword |
Recursive mixture estimation |
keyword |
Different components |
keyword |
Non-negative data |
keyword |
Bayesian estimation |
author
(primary) |
ARLID |
cav_un_auth*0355927 |
name1 |
Suzdaleva |
name2 |
Evženie |
institution |
UTIA-B |
full_dept (cz) |
Zpracování signálů |
full_dept (eng) |
Department of Signal Processing |
department (cz) |
ZS |
department (eng) |
ZS |
full_dept |
Department of Signal Processing |
country |
RU |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0101167 |
name1 |
Nagy |
name2 |
Ivan |
institution |
UTIA-B |
full_dept (cz) |
Zpracování signálů |
full_dept |
Department of Signal Processing |
department (cz) |
ZS |
department |
ZS |
full_dept |
Department of Signal Processing |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
source |
|
cas_special |
project |
project_id |
GA15-03564S |
agency |
GA ČR |
ARLID |
cav_un_auth*0321440 |
|
abstract
(eng) |
The paper provides a practical guide on initialization of the recursive mixture-based clustering of non-negative data. For modeling the non-negative data, mixtures of uniform, exponential, gamma and other distributions can be used. Initialization is known to be an important task for a start of the mixture estimation algorithm. Within the considered recursive approach, the key point of initialization is a choice of initial statistics of the involved prior distributions. The paper describes several initialization techniques for the mentioned types of components that can be beneficial primarily from a practical point of view. |
RIV |
BB |
FORD0 |
10000 |
FORD1 |
10100 |
FORD2 |
10103 |
reportyear |
2021 |
num_of_auth |
2 |
inst_support |
RVO:67985556 |
permalink |
http://hdl.handle.net/11104/0295982 |
confidential |
S |
mrcbC86 |
3+4 Proceedings Paper Automation Control Systems|Computer Science Theory Methods|Engineering Electrical Electronic|Robotics |
arlyear |
2020 |
mrcbU14 |
85065472276 SCOPUS |
mrcbU24 |
PUBMED |
mrcbU34 |
000493283300034 WOS |
mrcbU56 |
pdf |
mrcbU63 |
cav_un_epca*0504123 Informatics in Control, Automation and Robotics. ICINCO 2017. 978-3-030-11292-9 679 698 Cham Springer 2020 Lecture Notes in Electrical Engineering 495 |
mrcbU67 |
340 Gusikhin O. |
mrcbU67 |
340 Madani K. |
|