bibtype |
J -
Journal Article
|
ARLID |
0504439 |
utime |
20240111141019.0 |
mtime |
20190507235959.9 |
SCOPUS |
85063371842 |
WOS |
000464930500044 |
DOI |
10.1016/j.amc.2019.02.054 |
title
(primary) (eng) |
Efficient and flexible MATLAB implementation of 2D and 3D elastoplastic problems |
specification |
page_count |
20 s. |
media_type |
E |
|
serial |
ARLID |
cav_un_epca*0256160 |
ISSN |
0096-3003 |
title
|
Applied Mathematics and Computation |
volume_id |
355 |
page_num |
595-614 |
publisher |
|
|
keyword |
MATLAB code vectorization |
keyword |
elastoplasticity |
keyword |
finite element method |
keyword |
tangential stiffness matrix |
keyword |
semismooth Newton method |
author
(primary) |
ARLID |
cav_un_auth*0296439 |
name1 |
Čermák |
name2 |
Martin |
institution |
UGN-S |
full_dept (cz) |
Oddělení aplikované matematiky a informatiky & Oddělení IT4Innovations |
full_dept (eng) |
Department of applied mathematics and computer science and Department IT4Innovations |
full_dept |
Applied Mathematics and Computer Science & IT4Innovations |
country |
CZ |
garant |
K |
fullinstit |
Ústav geoniky AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0221817 |
name1 |
Sysala |
name2 |
Stanislav |
institution |
UGN-S |
full_dept (cz) |
Oddělení aplikované matematiky a informatiky & Oddělení IT4Innovations |
full_dept |
Department of applied mathematics and computer science and Department IT4Innovations |
full_dept |
Applied Mathematics and Computer Science & IT4Innovations |
country |
CZ |
fullinstit |
Ústav geoniky AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0292941 |
name1 |
Valdman |
name2 |
Jan |
institution |
UTIA-B |
full_dept (cz) |
Matematická teorie rozhodování |
full_dept |
Department of Decision Making Theory |
department (cz) |
MTR |
department |
MTR |
full_dept |
Department of Decision Making Theory |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
source |
|
cas_special |
project |
ARLID |
cav_un_auth*0333099 |
project_id |
LQ1602 |
agency |
GA MŠk |
|
abstract
(eng) |
Fully vectorized MATLAB implementation of various elastoplastic problems formulated in terms of displacement is considered. It is based on implicit time discretization, the finite element method and the semismooth Newton method. Each Newton iteration represents a linear system of equations with a tangent stiffness matrix. We propose a decomposition of this matrix consisting of three large sparse matrices representing the elastic stiffness operator, the strain-displacement operator, and the derivative of the stress-strain operator. The first two matrices are fixed and assembled once and only the third matrix needs to be updated in each iteration. Assembly times of the tangent stiffness matrices are linearly proportional to the number of plastic integration points in practical computations and never exceed the assembly time of the elastic stiffness matrix. MATLAB codes are available for download and provide complete finite element implementations in both 2D and 3D assuming von Mises and Drucker–Prager yield criteria. One can also choose several finite elements and numerical quadrature rules. |
result_subspec |
WOS |
RIV |
BA |
FORD0 |
10000 |
FORD1 |
10100 |
FORD2 |
10102 |
reportyear |
2020 |
num_of_auth |
3 |
mrcbC47 |
UTIA-B 10000 10100 10102 |
mrcbC52 |
4 X hod 4xh 20231122143959.3 |
mrcbC55 |
UTIA-B BA |
inst_support |
RVO:68145535 |
inst_support |
RVO:67985556 |
permalink |
http://hdl.handle.net/11104/0296072 |
mrcbC64 |
1 Applied Mathematics and Computer Science & IT4Innovations UGN-S 10102 MATHEMATICS, APPLIED |
confidential |
S |
mrcbC86 |
3+4 Article Chemistry Physical|Physics Atomic Molecular Chemical |
mrcbC91 |
C |
mrcbT16-e |
MATHEMATICSAPPLIED |
mrcbT16-j |
0.667 |
mrcbT16-s |
0.969 |
mrcbT16-B |
49.057 |
mrcbT16-D |
Q3 |
mrcbT16-E |
Q4 |
arlyear |
2019 |
mrcbTft |
\nSoubory v repozitáři: UGN_0504439.pdf |
mrcbU14 |
85063371842 SCOPUS |
mrcbU24 |
PUBMED |
mrcbU34 |
000464930500044 WOS |
mrcbU56 |
textový soubor |
mrcbU63 |
cav_un_epca*0256160 Applied Mathematics and Computation 0096-3003 1873-5649 Roč. 355 August 2019 2019 595 614 Elsevier |
|