bibtype J - Journal Article
ARLID 0504439
utime 20240111141019.0
mtime 20190507235959.9
SCOPUS 85063371842
WOS 000464930500044
DOI 10.1016/j.amc.2019.02.054
title (primary) (eng) Efficient and flexible MATLAB implementation of 2D and 3D elastoplastic problems
specification
page_count 20 s.
media_type E
serial
ARLID cav_un_epca*0256160
ISSN 0096-3003
title Applied Mathematics and Computation
volume_id 355
page_num 595-614
publisher
name Elsevier
keyword MATLAB code vectorization
keyword elastoplasticity
keyword finite element method
keyword tangential stiffness matrix
keyword semismooth Newton method
author (primary)
ARLID cav_un_auth*0296439
name1 Čermák
name2 Martin
institution UGN-S
full_dept (cz) Oddělení aplikované matematiky a informatiky & Oddělení IT4Innovations
full_dept (eng) Department of applied mathematics and computer science and Department IT4Innovations
full_dept Applied Mathematics and Computer Science & IT4Innovations
country CZ
garant K
fullinstit Ústav geoniky AV ČR, v. v. i.
author
ARLID cav_un_auth*0221817
name1 Sysala
name2 Stanislav
institution UGN-S
full_dept (cz) Oddělení aplikované matematiky a informatiky & Oddělení IT4Innovations
full_dept Department of applied mathematics and computer science and Department IT4Innovations
full_dept Applied Mathematics and Computer Science & IT4Innovations
country CZ
fullinstit Ústav geoniky AV ČR, v. v. i.
author
ARLID cav_un_auth*0292941
name1 Valdman
name2 Jan
institution UTIA-B
full_dept (cz) Matematická teorie rozhodování
full_dept Department of Decision Making Theory
department (cz) MTR
department MTR
full_dept Department of Decision Making Theory
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
source_type textový soubor
url https://www.sciencedirect.com/science/article/pii/S0096300319301584
cas_special
project
ARLID cav_un_auth*0333099
project_id LQ1602
agency GA MŠk
abstract (eng) Fully vectorized MATLAB implementation of various elastoplastic problems formulated in terms of displacement is considered. It is based on implicit time discretization, the finite element method and the semismooth Newton method. Each Newton iteration represents a linear system of equations with a tangent stiffness matrix. We propose a decomposition of this matrix consisting of three large sparse matrices representing the elastic stiffness operator, the strain-displacement operator, and the derivative of the stress-strain operator. The first two matrices are fixed and assembled once and only the third matrix needs to be updated in each iteration. Assembly times of the tangent stiffness matrices are linearly proportional to the number of plastic integration points in practical computations and never exceed the assembly time of the elastic stiffness matrix. MATLAB codes are available for download and provide complete finite element implementations in both 2D and 3D assuming von Mises and Drucker–Prager yield criteria. One can also choose several finite elements and numerical quadrature rules.
result_subspec WOS
RIV BA
FORD0 10000
FORD1 10100
FORD2 10102
reportyear 2020
num_of_auth 3
mrcbC47 UTIA-B 10000 10100 10102
mrcbC52 4 X hod 4xh 20231122143959.3
mrcbC55 UTIA-B BA
inst_support RVO:68145535
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0296072
mrcbC64 1 Applied Mathematics and Computer Science & IT4Innovations UGN-S 10102 MATHEMATICS, APPLIED
confidential S
mrcbC86 3+4 Article Chemistry Physical|Physics Atomic Molecular Chemical
mrcbC91 C
mrcbT16-e MATHEMATICSAPPLIED
mrcbT16-j 0.667
mrcbT16-s 0.969
mrcbT16-B 49.057
mrcbT16-D Q3
mrcbT16-E Q4
arlyear 2019
mrcbTft \nSoubory v repozitáři: UGN_0504439.pdf
mrcbU14 85063371842 SCOPUS
mrcbU24 PUBMED
mrcbU34 000464930500044 WOS
mrcbU56 textový soubor
mrcbU63 cav_un_epca*0256160 Applied Mathematics and Computation 0096-3003 1873-5649 Roč. 355 August 2019 2019 595 614 Elsevier