bibtype J - Journal Article
ARLID 0504581
utime 20240103222020.4
mtime 20190516235959.9
SCOPUS 85063397097
WOS 000466508300013
DOI 10.1002/int.22112
title (primary) (eng) Monte Carlo integration for Choquet integral
specification
page_count 11 s.
media_type P
serial
ARLID cav_un_epca*0256802
ISSN 0884-8173
title International Journal of Intelligent Systems
volume_id 34
volume 6 (2019)
page_num 1348-1358
publisher
name Wiley
keyword Choquet integral
keyword mean value theorem
keyword Monte Carlo integration
keyword simulation
author (primary)
ARLID cav_un_auth*0261431
name1 Agahi
name2 H.
country IR
author
ARLID cav_un_auth*0375106
share 30
name1 Mehri-Dehnavi
name2 H.
country IR
author
ARLID cav_un_auth*0101163
name1 Mesiar
name2 Radko
full_dept (cz) Ekonometrie
full_dept Department of Econometrics
department (cz) E
department E
institution UTIA-B
full_dept Department of Econometrics
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2019/E/mesiar-0504581.pdf
source
url https://onlinelibrary.wiley.com/doi/full/10.1002/int.22112
cas_special
abstract (eng) In this paper, a numerical Monte Carlo integration for Choquet integrals is proposed by using a generalized version of mean value theorem based on Choquet integral. In special cases, this generalization can help us to have the classical Monte Carlo integration and the mean value theorem over some unbounded regions.
result_subspec WOS
RIV BA
FORD0 10000
FORD1 10100
FORD2 10103
reportyear 2020
num_of_auth 3
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0297074
confidential S
mrcbC86 3+4 Article Plant Sciences|Marine Freshwater Biology
mrcbC91 C
mrcbT16-e COMPUTERSCIENCEARTIFICIALINTELLIGENCE
mrcbT16-j 1.052
mrcbT16-s 1.895
mrcbT16-B 75.33
mrcbT16-D Q1
mrcbT16-E Q1*
arlyear 2019
mrcbU14 85063397097 SCOPUS
mrcbU24 PUBMED
mrcbU34 000466508300013 WOS
mrcbU63 cav_un_epca*0256802 International Journal of Intelligent Systems 0884-8173 1098-111X Roč. 34 č. 6 2019 1348 1358 Wiley