bibtype J - Journal Article
ARLID 0504930
utime 20240103222048.8
mtime 20190528235959.9
SCOPUS 85062917077
WOS 000474317500001
DOI 10.1016/j.ijforecast.2019.01.005
title (primary) (eng) Forecasting dynamic return distributions based on ordered binary choice
specification
page_count 13 s.
serial
ARLID cav_un_epca*0251006
ISSN 0169-2070
title International Journal of Forecasting
volume_id 35
volume 3 (2019)
page_num 823-835
publisher
name Elsevier
keyword asset returns
keyword predictive distribution
keyword conditional probability
author (primary)
ARLID cav_un_auth*0338770
name1 Anatolyev
name2 Stanislav
institution NHU-N
full_dept Economics Institute
fullinstit Národohospodářský ústav AV ČR, v. v. i.
author
ARLID cav_un_auth*0242028
name1 Baruník
name2 Jozef
institution UTIA-B
full_dept (cz) Ekonometrie
full_dept Department of Econometrics
department (cz) E
department E
full_dept Department of Econometrics
country CZ
garant K
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://dx.doi.org/10.1016/j.ijforecast.2019.01.005
cas_special
project
ARLID cav_un_auth*0350251
project_id GA16-14179S
agency GA ČR
country CZ
abstract (eng) We present a simple approach to the forecasting of conditional probability distributions of asset returns. We work with a parsimonious specification of ordered binary choice regressions that imposes a connection on sign predictability across different quantiles. The model forecasts the future conditional probability distributions of returns quite precisely when using a past indicator and a past volatility proxy as predictors. The direct benefits of the model are revealed in an empirical application to the 29 most liquid U.S. stocks. The forecast probability distribution is translated to significant economic gains in a simple trading strategy. Our approach can also be useful in many other applications in which conditional distribution forecasts are desired.
RIV AH
FORD0 50000
FORD1 50200
FORD2 50202
reportyear 2020
mrcbC52 4 A sml hod 4as 4ah 20231122144023.3
inst_support RVO:67985998
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0296463
mrcbC64 1 Department of Econometrics UTIA-B 50202 ECONOMICS
confidential S
mrcbC86 3+4 Article Economics|Management
mrcbC91 C
mrcbT16-e ECONOMICS|MANAGEMENT
mrcbT16-j 1.443
mrcbT16-s 1.753
mrcbT16-B 77.99
mrcbT16-D Q1
mrcbT16-E Q1
arlyear 2019
mrcbTft \nSoubory v repozitáři: affirmation_license agreement_0504930.pdf, anatolyev_IJoF_2019.pdf
mrcbU14 85062917077 SCOPUS
mrcbU24 PUBMED
mrcbU34 000474317500001 WOS
mrcbU63 cav_un_epca*0251006 International Journal of Forecasting 0169-2070 1872-8200 Roč. 35 č. 3 2019 823 835 Elsevier