bibtype J - Journal Article
ARLID 0505120
utime 20240103222102.2
mtime 20190603235959.9
SCOPUS 85060571397
WOS 000458671100014
DOI 10.1080/00207721.2019.1567864
title (primary) (eng) Optimal fuzzy controller based on non-monotonic Lyapunov function with a case study on laboratory helicopter
specification
page_count 16 s.
media_type P
serial
ARLID cav_un_epca*0256821
ISSN 0020-7721
title International Journal of Systems Science
volume_id 50
volume 3 (2019)
page_num 652-667
publisher
name Taylor & Francis
keyword Takagi-Sugenofuzzy systems
keyword common quadratic Lyapunov function
keyword non-monotonic Lyapunov function
keyword optimal fuzzy control
keyword laboratory twin-rotor helicopter
keyword linear matrix inequalities
author (primary)
ARLID cav_un_auth*0375905
name1 Behzadimanesh
name2 S.
country IR
author
ARLID cav_un_auth*0375906
name1 Fatehi
name2 A.
country IR
author
ARLID cav_un_auth*0355639
name1 Fakhimi Derakhshan
name2 Siavash
full_dept (cz) Adaptivní systémy
full_dept Department of Adaptive Systems
department (cz) AS
department AS
institution UTIA-B
full_dept Department of Adaptive Systems
country IR
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2019/AS/fakhimi-0505120.pdf
source
url https://www.tandfonline.com/doi/full/10.1080/00207721.2019.1567864
cas_special
abstract (eng) This paper presents a new approach to design an observer-based optimal fuzzy state feedback controller for discrete-time Takagi–Sugeno fuzzy systems via LQR based on the non-monotonic Lyapunov function. Non-monotonic Lyapunov stability theorem proposed less conservative conditions rather than common quadratic method. To compare with optimal fuzzy feedback controller design based on common quadratic Lyapunov function, this paper proceeds reformulation of the observer-based optimal fuzzy state feedback controller based on common quadratic Lyapunov function. Also in both methodologies, the dependence of optimisation problem on initial conditions is omitted. As a practical case study, the controllers are implemented on a laboratory twin-rotor helicopter to compare the controllers' performance.
result_subspec WOS
RIV IN
FORD0 20000
FORD1 20200
FORD2 20205
reportyear 2020
num_of_auth 3
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0296951
confidential S
mrcbC86 3+4 Article Automation Control Systems|Computer Science Theory Methods|Operations Research Management Science
mrcbC91 C
mrcbT16-e AUTOMATIONCONTROLSYSTEMS|COMPUTERSCIENCETHEORYMETHODS|OPERATIONSRESEARCHMANAGEMENTSCIENCE
mrcbT16-j 0.488
mrcbT16-s 0.791
mrcbT16-B 38.782
mrcbT16-D Q3
mrcbT16-E Q4
arlyear 2019
mrcbU14 85060571397 SCOPUS
mrcbU34 000458671100014 WOS
mrcbU63 cav_un_epca*0256821 International Journal of Systems Science 0020-7721 1464-5319 Roč. 50 č. 3 2019 652 667 Taylor & Francis