bibtype C - Conference Paper (international conference)
ARLID 0505138
utime 20240111141019.8
mtime 20190603235959.9
SCOPUS 85069501261
WOS 000482554005104
DOI 10.1109/ICASSP.2019.8683885
title (primary) (eng) Performance bound for blind extraction of non-Gaussian complex-valued vector component from Gaussian background
specification
page_count 5 s.
media_type C
serial
ARLID cav_un_epca*0505137
ISBN 978-1-4799-8130-4
title 2019 IEEE International Conference on Acoustics, Speech, and Signal Processing ICASSP 2019
page_num 5287-5291
publisher
place Brighton, UK
name IEEE
year 2019
keyword Blind Source Extraction
keyword Independent Component Analysis
keyword Independent Vector Analysis
author (primary)
ARLID cav_un_auth*0355383
share 40
name1 Kautský
name2 Václav
institution UTIA-B
full_dept (cz) Stochastická informatika
full_dept (eng) Department of Stochastic Informatics
department (cz) SI
department (eng) SI
full_dept Department of Stochastic Informatics
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0230113
share 30
name1 Koldovský
name2 Z.
country CZ
author
ARLID cav_un_auth*0101212
share 30
name1 Tichavský
name2 Petr
institution UTIA-B
full_dept (cz) Stochastická informatika
full_dept Department of Stochastic Informatics
department (cz) SI
department SI
full_dept Department of Stochastic Informatics
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2019/SI/tichavsky-0505138.pdf
source_size 343 kB
cas_special
project
ARLID cav_un_auth*0345929
project_id GA17-00902S
agency GA ČR
abstract (eng) Independent Vector Extraction aims at the joint blind source extraction of K dependent signals of interest (SOI) from K mixtures (one signal from one mixture). Similarly to Independent Component/Vector Analysis (ICA/IVA), the SOIs are assumed to be independent of the other signals in the mixture. Compared to IVA, the (de-)mixing IVE model is reduced in the number of parameters for the extraction problem. The SOIs are assumed to be non-Gaussian or noncircular Gaussian, while the other signals are modeled as circular Gaussian. In this paper, a Cramer-Rao-Induced Bound (CRIB) for the achievable Interference-to-Signal Ratio (ISR) is derived for IVE. The bound is compared with similar bounds for ICA, IVA, and Independent Component Extraction (ICE). Numerical simulations show a good correspondence between the empirical results and the theory.
action
ARLID cav_un_auth*0375642
name 2019 IEEE International Conference on Acoustics, Speech, and Signal Processing ICASSP 2019
dates 20190512
mrcbC20-s 20190517
place Brighton
country GB
RIV BB
FORD0 20000
FORD1 20200
FORD2 20205
reportyear 2020
num_of_auth 3
presentation_type PO
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0297073
confidential S
mrcbC86 3+4 Proceedings Paper Acoustics|Engineering Electrical Electronic
arlyear 2019
mrcbU14 85069501261 SCOPUS
mrcbU24 PUBMED
mrcbU34 000482554005104 WOS
mrcbU56 343 kB
mrcbU63 cav_un_epca*0505137 2019 IEEE International Conference on Acoustics, Speech, and Signal Processing ICASSP 2019 978-1-4799-8130-4 5287 5291 Brighton, UK IEEE 2019 CFP19ICA-USB