bibtype J - Journal Article
ARLID 0505226
utime 20240103222109.8
mtime 20190605235959.9
WOS 000457791100005
SCOPUS 85068216962
title (primary) (eng) Regression Quantiles under Heteroscedasticity and Multicollinearity: Analysis of Travel and Tourism Competitiveness
specification
page_count 17 s.
media_type P
serial
ARLID cav_un_epca*0250419
ISSN 0013-3035
title Ekonomický časopis
volume_id 67
volume 1 (2019)
page_num 69-85
publisher
name Ekonomický ústav SAV
keyword linear regression
keyword model selection
keyword regression quantiles
author (primary)
ARLID cav_un_auth*0345793
name1 Kalina
name2 Jan
full_dept (cz) Stochastická informatika
full_dept (eng) Department of Stochastic Informatics
department (cz) SI
department (eng) SI
institution UTIA-B
full_dept Department of Stochastic Informatics
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0372203
name1 Vašaničová
name2 P.
country SK
author
ARLID cav_un_auth*0372204
name1 Litavcová
name2 E.
country SK
source
url http://library.utia.cas.cz/separaty/2019/SI/kalina-0505226.pdf
source
url https://www.sav.sk/index.php?lang=sk&doc=journal-list&part=article_response_page&journal_article_no=16099
cas_special
project
ARLID cav_un_auth*0345381
project_id GA17-07384S
agency GA ČR
abstract (eng) In the linear regression, heteroscedasticity and multicollinearity can be characterized as intertwined problems, which often simultaneously appear in econometric models. The aim of this paper is to discuss various approaches to regression modelling for heteroscedastic multicollinear data. A real economic dataset from the World Economic Forum serves as an illustration of various individual methods and the paper provides a practical motivation for quantile regression and particularly for regularized regression quantiles. In the dataset, tourist service infrastructure across 141 countries is modeled as a response of 12 characteristics of the Travel and Tourism Competitiveness Index (TTCI). Regression quantiles and their lasso estimates turn out to be more suitable for the dataset compared to more traditional econometric tools.
result_subspec WOS
RIV BB
FORD0 10000
FORD1 10100
FORD2 10103
reportyear 2020
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0296709
confidential S
mrcbC86 1 Article Economics
mrcbC91 A
mrcbT16-e ECONOMICS
mrcbT16-j 0.065
mrcbT16-s 0.271
mrcbT16-B 2.205
mrcbT16-D Q4
mrcbT16-E Q4
arlyear 2019
mrcbU14 85068216962 SCOPUS
mrcbU24 PUBMED
mrcbU34 000457791100005 WOS
mrcbU63 cav_un_epca*0250419 Ekonomický časopis 0013-3035 0013-3035 Roč. 67 č. 1 2019 69 85 Ekonomický ústav SAV