bibtype J - Journal Article
ARLID 0505448
utime 20240103222124.5
mtime 20190612235959.9
SCOPUS 85064633416
WOS 000469483000017
DOI 10.1007/s00138-019-01028-6
title (primary) (eng) Pseudocolor enhancement of mammogram texture abnormalities
specification
page_count 10 s.
media_type P
serial
ARLID cav_un_epca*0254218
ISSN 0932-8092
title Machine Vision and Applications
volume_id 30
volume 4 (2019)
page_num 785-794
publisher
name Springer
keyword Mammograms
keyword Region of interest enhancement
keyword Computer-aided diagnosis
keyword Texture model
keyword Markov random field
author (primary)
ARLID cav_un_auth*0101093
full_dept (cz) Rozpoznávání obrazu
full_dept (eng) Department of Pattern Recognition
department (cz) RO
department (eng) RO
full_dept Department of Pattern Recognition
name1 Haindl
name2 Michal
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0286710
full_dept (cz) Rozpoznávání obrazu
full_dept Department of Pattern Recognition
department (cz) RO
department RO
full_dept Department of Pattern Recognition
name1 Remeš
name2 Václav
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2019/RO/haindl-0505448.pdf
source
url https://link.springer.com/article/10.1007%2Fs00138-019-01028-6
cas_special
project
ARLID cav_un_auth*0376011
project_id GA19-12340S
agency GA ČR
country CZ
abstract (eng) We present a novel method for enhancing texture irregularities, both lesions and microcalcifications, in digital X-ray mammograms. It can be implemented in computer-aided diagnostic systems to help improve radiologists’ diagnosis precision. The method provides three different outputs aimed at enhancing three different sizes of mammogram abnormalities. Our approach uses a two-dimensional adaptive causal autoregressive texture model to represent local texture characteristics. Based on these, we enhance suspicious breast tissue abnormalities, such as microcalcifications and masses, to make signs of developing cancer better visually discernible. We extract over 200 local textural features from different frequency bands, which are then combined into a single multichannel image using the Karhunen–Loeve transform. We propose an extension to existing contrast measures for the evaluation of contrast around regions of interest. Our method was extensively tested on the INbreast database and compared both visually and numerically with three state-of-the-art enhancement methods, with favorable results.
result_subspec WOS
RIV BD
FORD0 20000
FORD1 20200
FORD2 20205
reportyear 2020
num_of_auth 2
mrcbC52 4 A hod sml 4ah 4as 20231122144046.1
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0297004
mrcbC64 1 Department of Pattern Recognition UTIA-B 10201 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
confidential S
contract
name Copyright
date 20190408
note Copyright Transfer Statement
article_num 6
mrcbC86 3+4 Article Biochemistry Molecular Biology|Biophysics
mrcbC91 C
mrcbT16-e COMPUTERSCIENCEARTIFICIALINTELLIGENCE|COMPUTERSCIENCECYBERNETICS|ENGINEERINGELECTRICALELECTRONIC
mrcbT16-j 0.521
mrcbT16-s 0.517
mrcbT16-B 35.038
mrcbT16-D Q3
mrcbT16-E Q4
arlyear 2019
mrcbTft \nSoubory v repozitáři: haindl-0505448.pdf, haindl-0505448-Copyright.pdf
mrcbU14 85064633416 SCOPUS
mrcbU24 PUBMED
mrcbU34 000469483000017 WOS
mrcbU63 cav_un_epca*0254218 Machine Vision and Applications 0932-8092 1432-1769 Roč. 30 č. 4 2019 785 794 Springer