| bibtype |
J -
Journal Article
|
| ARLID |
0505534 |
| utime |
20240103222131.9 |
| mtime |
20190617235959.9 |
| SCOPUS |
85065471395 |
| WOS |
000473249600009 |
| DOI |
10.1016/j.jmateco.2019.04.006 |
| title
(primary) (eng) |
SSB representation of preferences: Weakening of convexity assumptions |
| specification |
| page_count |
5 s. |
| media_type |
P |
|
| serial |
| ARLID |
cav_un_epca*0257019 |
| ISSN |
0304-4068 |
| title
|
Journal of Mathematical Economics |
| volume_id |
83 |
| volume |
1 (2019) |
| page_num |
84-88 |
| publisher |
|
|
| keyword |
SSB representation |
| keyword |
Inductive linear topology |
| keyword |
Non-transitive preferences |
| author
(primary) |
| ARLID |
cav_un_auth*0234872 |
| full_dept |
Department of Decision Making Theory |
| share |
100 |
| name1 |
Pištěk |
| name2 |
Miroslav |
| institution |
UTIA-B |
| full_dept (cz) |
Matematická teorie rozhodování |
| full_dept (eng) |
Department of Decision Making Theory |
| department (cz) |
MTR |
| department (eng) |
MTR |
| country |
CZ |
| garant |
K |
| fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
| source |
|
| source |
|
| cas_special |
| project |
| ARLID |
cav_un_auth*0348851 |
| project_id |
GA17-08182S |
| agency |
GA ČR |
|
| abstract
(eng) |
A continuous skew-symmetric bilinear (SSB) representation of preferences has recently been proposed in a topological vector space, assuming a weaker notion of convexity of preferences than in the classical (algebraic) case. Equipping a linear vector space with the so-called inductive linear topology, we derive the algebraic SSB representation on such topological basis, thus weakening the convexity assumption. Such a unifying approach to SSB representation leads, moreover, to a stronger existence result for a maximal element and opens a way for a non-probabilistic interpretation of the algebraic theory. Note finally that our method of using powerful topological techniques to derive purely algebraic result may be of general interest. |
| result_subspec |
WOS |
| RIV |
BA |
| FORD0 |
10000 |
| FORD1 |
10100 |
| FORD2 |
10102 |
| reportyear |
2020 |
| num_of_auth |
1 |
| inst_support |
RVO:67985556 |
| permalink |
http://hdl.handle.net/11104/0297069 |
| confidential |
S |
| mrcbC86 |
3+4 Article Chemistry Multidisciplinary |
| mrcbC91 |
C |
| mrcbT16-e |
MATHEMATICS.INTERDISCIPLINARYAPPLICATIONS|SOCIALSCIENCES.MATHEMATICALMETHODS|ECONOMICS |
| mrcbT16-f |
0.718 |
| mrcbT16-g |
0.05 |
| mrcbT16-h |
17.1 |
| mrcbT16-i |
0.0036 |
| mrcbT16-j |
0.613 |
| mrcbT16-k |
1429 |
| mrcbT16-q |
48 |
| mrcbT16-s |
0.944 |
| mrcbT16-y |
31.47 |
| mrcbT16-x |
0.8 |
| mrcbT16-3 |
191 |
| mrcbT16-4 |
Q1 |
| mrcbT16-5 |
0.639 |
| mrcbT16-6 |
80 |
| mrcbT16-7 |
Q4 |
| mrcbT16-B |
44.3 |
| mrcbT16-C |
17.9 |
| mrcbT16-D |
Q3 |
| mrcbT16-E |
Q4 |
| mrcbT16-M |
0.37 |
| mrcbT16-N |
Q3 |
| mrcbT16-P |
20.588 |
| arlyear |
2019 |
| mrcbU14 |
85065471395 SCOPUS |
| mrcbU24 |
PUBMED |
| mrcbU34 |
000473249600009 WOS |
| mrcbU63 |
cav_un_epca*0257019 Journal of Mathematical Economics 0304-4068 1873-1538 Roč. 83 č. 1 2019 84 88 Elsevier |
|