bibtype |
J -
Journal Article
|
ARLID |
0506602 |
utime |
20240103222303.5 |
mtime |
20190719235959.9 |
SCOPUS |
85068558335 |
WOS |
000482374500084 |
DOI |
10.1016/j.patrec.2019.06.027 |
title
(primary) (eng) |
Bark recognition using novel rotationally invariant multispectral textural features |
specification |
page_count |
6 s. |
media_type |
P |
|
serial |
ARLID |
cav_un_epca*0257389 |
ISSN |
0167-8655 |
title
|
Pattern Recognition Letters |
volume_id |
125 |
volume |
1 (2019) |
page_num |
612-617 |
publisher |
|
|
keyword |
Bark recognition |
keyword |
Tree taxonomy clasification |
keyword |
Spiral Markov random field model |
keyword |
textural feature |
author
(primary) |
ARLID |
cav_un_auth*0286710 |
name1 |
Remeš |
name2 |
Václav |
institution |
UTIA-B |
full_dept (cz) |
Rozpoznávání obrazu |
full_dept (eng) |
Department of Pattern Recognition |
department (cz) |
RO |
department (eng) |
RO |
full_dept |
Department of Pattern Recognition |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0101093 |
name1 |
Haindl |
name2 |
Michal |
institution |
UTIA-B |
full_dept (cz) |
Rozpoznávání obrazu |
full_dept |
Department of Pattern Recognition |
department (cz) |
RO |
department |
RO |
full_dept |
Department of Pattern Recognition |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
source |
|
source |
|
cas_special |
project |
ARLID |
cav_un_auth*0376011 |
project_id |
GA19-12340S |
agency |
GA ČR |
country |
CZ |
|
abstract
(eng) |
We present novel rotationally invariant fully multispectral Markovian textural features applied for the efficient tree bark recognition. These textural features are derived from the novel descriptive multispectral spiral wide-sense Markov model. Unlike the alternative bark recognition methods based on various gray-scale discriminative textural descriptions, we benefit from fully descriptive color, rotationally invariant bark texture representation. The proposed methods significantly outperform the state-of-the-art bark recognition approaches regarding classification accuracy. Both our classifiers outperform convolutional neural network ResNet even on the largest public bark database BarkNet which contains 23 000 high-resolution images from 23 different tree species. |
result_subspec |
WOS |
RIV |
BD |
FORD0 |
20000 |
FORD1 |
20200 |
FORD2 |
20202 |
reportyear |
2020 |
num_of_auth |
2 |
mrcbC52 |
4 A hod 4ah 20231122144131.0 |
inst_support |
RVO:67985556 |
permalink |
http://hdl.handle.net/11104/0297826 |
mrcbC64 |
1 Department of Pattern Recognition UTIA-B 10201 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE |
confidential |
S |
mrcbC86 |
2 Article Computer Science Artificial Intelligence |
mrcbC91 |
C |
mrcbT16-e |
COMPUTERSCIENCEARTIFICIALINTELLIGENCE |
mrcbT16-j |
0.844 |
mrcbT16-s |
0.848 |
mrcbT16-B |
62.394 |
mrcbT16-D |
Q2 |
mrcbT16-E |
Q4 |
arlyear |
2019 |
mrcbTft |
\nSoubory v repozitáři: haindl-0506602.pdf |
mrcbU14 |
85068558335 SCOPUS |
mrcbU24 |
PUBMED |
mrcbU34 |
000482374500084 WOS |
mrcbU63 |
cav_un_epca*0257389 Pattern Recognition Letters 0167-8655 1872-7344 Roč. 125 č. 1 2019 612 617 Elsevier |
|