bibtype J - Journal Article
ARLID 0506602
utime 20240103222303.5
mtime 20190719235959.9
SCOPUS 85068558335
WOS 000482374500084
DOI 10.1016/j.patrec.2019.06.027
title (primary) (eng) Bark recognition using novel rotationally invariant multispectral textural features
specification
page_count 6 s.
media_type P
serial
ARLID cav_un_epca*0257389
ISSN 0167-8655
title Pattern Recognition Letters
volume_id 125
volume 1 (2019)
page_num 612-617
publisher
name Elsevier
keyword Bark recognition
keyword Tree taxonomy clasification
keyword Spiral Markov random field model
keyword textural feature
author (primary)
ARLID cav_un_auth*0286710
name1 Remeš
name2 Václav
institution UTIA-B
full_dept (cz) Rozpoznávání obrazu
full_dept (eng) Department of Pattern Recognition
department (cz) RO
department (eng) RO
full_dept Department of Pattern Recognition
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101093
name1 Haindl
name2 Michal
institution UTIA-B
full_dept (cz) Rozpoznávání obrazu
full_dept Department of Pattern Recognition
department (cz) RO
department RO
full_dept Department of Pattern Recognition
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2019/RO/haindl-0506602.pdf
source
url https://www.sciencedirect.com/science/article/pii/S0167865519301886
cas_special
project
ARLID cav_un_auth*0376011
project_id GA19-12340S
agency GA ČR
country CZ
abstract (eng) We present novel rotationally invariant fully multispectral Markovian textural features applied for the efficient tree bark recognition. These textural features are derived from the novel descriptive multispectral spiral wide-sense Markov model. Unlike the alternative bark recognition methods based on various gray-scale discriminative textural descriptions, we benefit from fully descriptive color, rotationally invariant bark texture representation. The proposed methods significantly outperform the state-of-the-art bark recognition approaches regarding classification accuracy. Both our classifiers outperform convolutional neural network ResNet even on the largest public bark database BarkNet which contains 23 000 high-resolution images from 23 different tree species.
result_subspec WOS
RIV BD
FORD0 20000
FORD1 20200
FORD2 20202
reportyear 2020
num_of_auth 2
mrcbC52 4 A hod 4ah 20231122144131.0
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0297826
mrcbC64 1 Department of Pattern Recognition UTIA-B 10201 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
confidential S
mrcbC86 2 Article Computer Science Artificial Intelligence
mrcbC91 C
mrcbT16-e COMPUTERSCIENCEARTIFICIALINTELLIGENCE
mrcbT16-j 0.844
mrcbT16-s 0.848
mrcbT16-B 62.394
mrcbT16-D Q2
mrcbT16-E Q4
arlyear 2019
mrcbTft \nSoubory v repozitáři: haindl-0506602.pdf
mrcbU14 85068558335 SCOPUS
mrcbU24 PUBMED
mrcbU34 000482374500084 WOS
mrcbU63 cav_un_epca*0257389 Pattern Recognition Letters 0167-8655 1872-7344 Roč. 125 č. 1 2019 612 617 Elsevier