bibtype J - Journal Article
ARLID 0506861
utime 20240903170546.1
mtime 20190725235959.9
SCOPUS 84987679930
WOS 000351252000003
DOI 10.14311/NNW.2015.25.002
title (primary) (eng) Modelling Occupancy-Queue Relation Using Gaussian Process
specification
page_count 18 s.
media_type P
serial
ARLID cav_un_epca*0290321
ISSN 1210-0552
title Neural Network World
volume_id 25
volume 1 (2015)
page_num 35-52
publisher
name Ústav informatiky AV ČR, v. v. i.
keyword queue estimation
keyword uncertainty
keyword traffic model
keyword Gaussian process
author (primary)
ARLID cav_un_auth*0205734
full_dept (cz) Adaptivní systémy
full_dept (eng) Department of Adaptive Systems
department (cz) AS
department (eng) AS
share 80
name1 Přikryl
name2 Jan
institution UTIA-B
country CZ
garant K
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0255838
share 20
name1 Kocijan
name2 J.
country SI
source
url http://library.utia.cas.cz/separaty/2019/AS/prikryl-0506861.pdf
cas_special
project
ARLID cav_un_auth*0001814
project_id 1M0572
agency GA MŠk
project
ARLID cav_un_auth*0263551
project_id MEB091015
agency GA MŠk
country CZ
abstract (eng) One of the key indicators of the quality of service for urban transportation control systems is the queue length. Even in unsaturated conditions, longer queues indicate longer travel delays and higher fuel consumption. With the exception of some expensive surveillance equipment, the queue length itself cannot be measured automatically, and manual measurement is both impractical and costly in a long term scenario. Hence, many mathematical models that express the queue length as a function of detector measurements are used in engineering practice, ranging from simple to elaborate ones. The method proposed in this paper makes use of detector time-occupancy, a complementary quantity to vehicle count, provided by most of the traffic detectors at no cost and disregarded by majority of existing approaches for various reasons. Our model is designed as a complement to existing methods. It is based on Gaussian-process model of the occupancy-queue relationship, it can handle data uncertainties, and it provides more information about the quality of the queue length prediction.
result_subspec WOS
RIV BB
FORD0 10000
FORD1 10100
FORD2 10103
reportyear 2020
num_of_auth 2
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0298023
cooperation
ARLID cav_un_auth*0328371
name Jozef Stefan Institute
country SI
cooperation
ARLID cav_un_auth*0377558
name ČVUT v Praze, Fakulta dopravní
institution ČVUT FD
country CZ
confidential S
mrcbT16-e COMPUTERSCIENCEARTIFICIALINTELLIGENCE
mrcbT16-j 0.099
mrcbT16-s 0.229
mrcbT16-4 Q3
mrcbT16-B 2.559
mrcbT16-C 13.462
mrcbT16-D Q4
mrcbT16-E Q4
arlyear 2015
mrcbU14 84987679930 SCOPUS
mrcbU24 PUBMED
mrcbU34 000351252000003 WOS
mrcbU63 cav_un_epca*0290321 Neural Network World 1210-0552 Roč. 25 č. 1 2015 35 52 Ústav informatiky AV ČR, v. v. i.