bibtype J - Journal Article
ARLID 0506896
utime 20240103222326.1
mtime 20190726235959.9
SCOPUS 85052592985
WOS 000443306900008
DOI 10.1007/s00493-017-3534-y
title (primary) (eng) Classes of Matroids Closed Under Minors and Principal Extensions
specification
page_count 20 s.
media_type P
serial
ARLID cav_un_epca*0256429
ISSN 0209-9683
title Combinatorica
volume_id 38
volume 4 (2018)
page_num 935-954
publisher
name Springer
keyword Matroids
keyword Measures of information
keyword Coding theorems
author (primary)
ARLID cav_un_auth*0101161
name1 Matúš
name2 František
full_dept (cz) Matematická teorie rozhodování
full_dept (eng) Department of Decision Making Theory
department (cz) MTR
department (eng) MTR
institution UTIA-B
full_dept Department of Decision Making Theory
garant K
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2019/MTR/matus-0506896.pdf
source
url https://link.springer.com/article/10.1007/s00493-017-3534-y
cas_special
project
ARLID cav_un_auth*0292670
project_id GA13-20012S
agency GA ČR
abstract (eng) This work studies the classes of matroids that are closed under minors, addition of coloops and principal extensions. To any matroid M in such a class a matroid M° is constructed such that it contains M as a minor, has all proper minors in the class and violates Zhang- Yeung inequality. When the class enjoys the inequality the matroid M° becomes an excluded minor. An analogous assertion was known before for the linear matroids over any infinite field in connection with Ingleton inequality. The result is applied to the classes of multilinear, algebraic and almost entropic matroids. In particular, the class of almost entropic matroids has infinitely many excluded minors.
result_subspec WOS
RIV BA
FORD0 10000
FORD1 10100
FORD2 10101
reportyear 2020
mrcbC52 4 A hod 4ah 20231122144138.8
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0298024
mrcbC64 1 Department of Decision Making Theory UTIA-B 10103 STATISTICS & PROBABILITY
confidential S
mrcbC86 n.a. Article Mathematics
mrcbC91 C
mrcbT16-e MATHEMATICS
mrcbT16-j 1.658
mrcbT16-s 1.733
mrcbT16-B 91.052
mrcbT16-D Q1*
mrcbT16-E Q1*
arlyear 2018
mrcbTft \nSoubory v repozitáři: matus-0506896.pdf
mrcbU14 85052592985 SCOPUS
mrcbU24 PUBMED
mrcbU34 000443306900008 WOS
mrcbU63 cav_un_epca*0256429 Combinatorica 0209-9683 1439-6912 Roč. 38 č. 4 2018 935 954 Springer