| bibtype |
J -
Journal Article
|
| ARLID |
0506945 |
| utime |
20240903170642.7 |
| mtime |
20190726235959.9 |
| SCOPUS |
84940037356 |
| WOS |
000361266300004 |
| DOI |
10.14736/kyb-2015-3-0420 |
| title
(primary) (eng) |
Choquet-like integrals with respect to level-dependent capacities and φ-ordinal sums of aggregation function |
| specification |
| page_count |
13 s. |
| media_type |
P |
|
| serial |
| ARLID |
cav_un_epca*0297163 |
| ISSN |
0023-5954 |
| title
|
Kybernetika |
| volume_id |
51 |
| volume |
3 (2015) |
| page_num |
420-432 |
| publisher |
| name |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
|
| keyword |
Choquet integral |
| keyword |
Choquet-like integral |
| keyword |
level-dependent capacity |
| keyword |
φ -ordinal sum of aggregation functions |
| author
(primary) |
| ARLID |
cav_un_auth*0101163 |
| full_dept (cz) |
Ekonometrie |
| full_dept (eng) |
Department of Econometrics |
| department (cz) |
E |
| department (eng) |
E |
| full_dept |
Department of Econometrics |
| share |
50 |
| name1 |
Mesiar |
| name2 |
Radko |
| institution |
UTIA-B |
| fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
| author
|
| ARLID |
cav_un_auth*0377653 |
| share |
50 |
| name1 |
Smrek |
| name2 |
P. |
| country |
SK |
| garant |
K |
|
| source |
|
| cas_special |
| abstract
(eng) |
In this study we merge the concepts of Choquet-like integrals and the Choquet integral with respect to level dependent capacities. For finite spaces and piece-wise constant level-dependent capacities our approach can be represented as a φ-ordinal sum of Choquet-like integrals acting on subdomains of the considered scale, and thus it can be regarded as extension method. The approach is illustrated by several examples. |
| result_subspec |
WOS |
| RIV |
BA |
| FORD0 |
10000 |
| FORD1 |
10100 |
| FORD2 |
10102 |
| reportyear |
2020 |
| num_of_auth |
2 |
| inst_support |
RVO:67985556 |
| permalink |
http://hdl.handle.net/11104/0298085 |
| confidential |
S |
| mrcbT16-e |
COMPUTERSCIENCE.CYBERNETICS |
| mrcbT16-f |
0.578 |
| mrcbT16-g |
0.031 |
| mrcbT16-h |
999.9 |
| mrcbT16-i |
0.00152 |
| mrcbT16-j |
0.305 |
| mrcbT16-k |
678 |
| mrcbT16-s |
0.321 |
| mrcbT16-4 |
Q2 |
| mrcbT16-5 |
0.438 |
| mrcbT16-6 |
64 |
| mrcbT16-7 |
Q4 |
| mrcbT16-B |
30.893 |
| mrcbT16-C |
11.4 |
| mrcbT16-D |
Q3 |
| mrcbT16-E |
Q3 |
| mrcbT16-P |
11.364 |
| arlyear |
2015 |
| mrcbU14 |
84940037356 SCOPUS |
| mrcbU24 |
PUBMED |
| mrcbU34 |
000361266300004 WOS |
| mrcbU63 |
cav_un_epca*0297163 Kybernetika 0023-5954 Roč. 51 č. 3 2015 420 432 Ústav teorie informace a automatizace AV ČR, v. v. i. |
|