bibtype |
J -
Journal Article
|
ARLID |
0506951 |
utime |
20240103222330.6 |
mtime |
20190726235959.9 |
SCOPUS |
84939997651 |
WOS |
000354500300014 |
DOI |
10.1007/s00500-014-1578-0 |
title
(primary) (eng) |
On Cauchy-Schwarz’s inequality for Choquet-like integrals without the comonotonicity condition |
specification |
page_count |
8 s. |
media_type |
P |
|
serial |
ARLID |
cav_un_epca*0258368 |
ISSN |
1432-7643 |
title
|
Soft Computing |
volume_id |
19 |
volume |
6 (2015) |
page_num |
1627-1634 |
publisher |
|
|
keyword |
Cauchy-Schwarz’s inequality |
keyword |
Choquet expectation |
keyword |
Hölder’s inequality |
keyword |
Monotone probability |
keyword |
Pseudo-analysis |
keyword |
Choquet-like integrals |
keyword |
Sugeno integral |
author
(primary) |
ARLID |
cav_un_auth*0261431 |
name1 |
Agahi |
name2 |
H. |
country |
IR |
garant |
K |
|
author
|
ARLID |
cav_un_auth*0101163 |
full_dept (cz) |
Ekonometrie |
full_dept |
Department of Econometrics |
department (cz) |
E |
department |
E |
full_dept |
Department of Econometrics |
share |
50 |
name1 |
Mesiar |
name2 |
Radko |
institution |
UTIA-B |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
source |
|
cas_special |
abstract
(eng) |
Cauchy-Schwarz’s inequality is one of the most important inequalities in probability, measure theory and analysis. The problem of finding a sharp inequality of Cauchy–Schwarz type for Sugeno integral without the comonotonicity condition based on the multiplication operator has led to a challenging and an interesting subject for researchers. In this paper, we give a Cauchy–Schwarz’s inequality without the comonotonicity condition based on pseudo-analysis for two classes of Choquet-like integrals as generalizations of Choquet integral and Sugeno integral. In the first class, pseudo-operations are defined by a continuous strictly increasing function $$g$$g. Another class concerns the Choquet-like integrals based on the operator “$$\sup $$sup” and a pseudo-multiplication $$\otimes $$⊗. When working on the second class of Choquet-like integrals, our results give a new version of Cauchy–Schwarz’s inequality for Sugeno integral without the comonotonicity condition based on the multiplication operator. |
result_subspec |
WOS |
RIV |
BA |
FORD0 |
10000 |
FORD1 |
10100 |
FORD2 |
10102 |
reportyear |
2020 |
num_of_auth |
2 |
inst_support |
RVO:67985556 |
permalink |
http://hdl.handle.net/11104/0298081 |
confidential |
S |
mrcbT16-e |
COMPUTERSCIENCEARTIFICIALINTELLIGENCE|COMPUTERSCIENCEINTERDISCIPLINARYAPPLICATIONS |
mrcbT16-j |
0.52 |
mrcbT16-s |
0.759 |
mrcbT16-4 |
Q2 |
mrcbT16-B |
31.956 |
mrcbT16-C |
56.298 |
mrcbT16-D |
Q3 |
mrcbT16-E |
Q2 |
arlyear |
2015 |
mrcbU14 |
84939997651 SCOPUS |
mrcbU24 |
PUBMED |
mrcbU34 |
000354500300014 WOS |
mrcbU63 |
cav_un_epca*0258368 Soft Computing 1432-7643 1433-7479 Roč. 19 č. 6 2015 1627 1634 Springer |
|