bibtype J - Journal Article
ARLID 0506951
utime 20240103222330.6
mtime 20190726235959.9
SCOPUS 84939997651
WOS 000354500300014
DOI 10.1007/s00500-014-1578-0
title (primary) (eng) On Cauchy-Schwarz’s inequality for Choquet-like integrals without the comonotonicity condition
specification
page_count 8 s.
media_type P
serial
ARLID cav_un_epca*0258368
ISSN 1432-7643
title Soft Computing
volume_id 19
volume 6 (2015)
page_num 1627-1634
publisher
name Springer
keyword Cauchy-Schwarz’s inequality
keyword Choquet expectation
keyword Hölder’s inequality
keyword Monotone probability
keyword Pseudo-analysis
keyword Choquet-like integrals
keyword Sugeno integral
author (primary)
ARLID cav_un_auth*0261431
name1 Agahi
name2 H.
country IR
garant K
author
ARLID cav_un_auth*0101163
full_dept (cz) Ekonometrie
full_dept Department of Econometrics
department (cz) E
department E
full_dept Department of Econometrics
share 50
name1 Mesiar
name2 Radko
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2019/E/mesiar-0506951.pdf
cas_special
abstract (eng) Cauchy-Schwarz’s inequality is one of the most important inequalities in probability, measure theory and analysis. The problem of finding a sharp inequality of Cauchy–Schwarz type for Sugeno integral without the comonotonicity condition based on the multiplication operator has led to a challenging and an interesting subject for researchers. In this paper, we give a Cauchy–Schwarz’s inequality without the comonotonicity condition based on pseudo-analysis for two classes of Choquet-like integrals as generalizations of Choquet integral and Sugeno integral. In the first class, pseudo-operations are defined by a continuous strictly increasing function $$g$$g. Another class concerns the Choquet-like integrals based on the operator “$$\sup $$sup” and a pseudo-multiplication $$\otimes $$⊗. When working on the second class of Choquet-like integrals, our results give a new version of Cauchy–Schwarz’s inequality for Sugeno integral without the comonotonicity condition based on the multiplication operator.
result_subspec WOS
RIV BA
FORD0 10000
FORD1 10100
FORD2 10102
reportyear 2020
num_of_auth 2
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0298081
confidential S
mrcbT16-e COMPUTERSCIENCEARTIFICIALINTELLIGENCE|COMPUTERSCIENCEINTERDISCIPLINARYAPPLICATIONS
mrcbT16-j 0.52
mrcbT16-s 0.759
mrcbT16-4 Q2
mrcbT16-B 31.956
mrcbT16-C 56.298
mrcbT16-D Q3
mrcbT16-E Q2
arlyear 2015
mrcbU14 84939997651 SCOPUS
mrcbU24 PUBMED
mrcbU34 000354500300014 WOS
mrcbU63 cav_un_epca*0258368 Soft Computing 1432-7643 1433-7479 Roč. 19 č. 6 2015 1627 1634 Springer