| bibtype |
J -
Journal Article
|
| ARLID |
0506951 |
| utime |
20240103222330.6 |
| mtime |
20190726235959.9 |
| SCOPUS |
84939997651 |
| WOS |
000354500300014 |
| DOI |
10.1007/s00500-014-1578-0 |
| title
(primary) (eng) |
On Cauchy-Schwarz’s inequality for Choquet-like integrals without the comonotonicity condition |
| specification |
| page_count |
8 s. |
| media_type |
P |
|
| serial |
| ARLID |
cav_un_epca*0258368 |
| ISSN |
1432-7643 |
| title
|
Soft Computing |
| volume_id |
19 |
| volume |
6 (2015) |
| page_num |
1627-1634 |
| publisher |
|
|
| keyword |
Cauchy-Schwarz’s inequality |
| keyword |
Choquet expectation |
| keyword |
Hölder’s inequality |
| keyword |
Monotone probability |
| keyword |
Pseudo-analysis |
| keyword |
Choquet-like integrals |
| keyword |
Sugeno integral |
| author
(primary) |
| ARLID |
cav_un_auth*0261431 |
| name1 |
Agahi |
| name2 |
H. |
| country |
IR |
| garant |
K |
|
| author
|
| ARLID |
cav_un_auth*0101163 |
| full_dept (cz) |
Ekonometrie |
| full_dept |
Department of Econometrics |
| department (cz) |
E |
| department |
E |
| full_dept |
Department of Econometrics |
| share |
50 |
| name1 |
Mesiar |
| name2 |
Radko |
| institution |
UTIA-B |
| fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
| source |
|
| cas_special |
| abstract
(eng) |
Cauchy-Schwarz’s inequality is one of the most important inequalities in probability, measure theory and analysis. The problem of finding a sharp inequality of Cauchy–Schwarz type for Sugeno integral without the comonotonicity condition based on the multiplication operator has led to a challenging and an interesting subject for researchers. In this paper, we give a Cauchy–Schwarz’s inequality without the comonotonicity condition based on pseudo-analysis for two classes of Choquet-like integrals as generalizations of Choquet integral and Sugeno integral. In the first class, pseudo-operations are defined by a continuous strictly increasing function $$g$$g. Another class concerns the Choquet-like integrals based on the operator “$$\sup $$sup” and a pseudo-multiplication $$\otimes $$⊗. When working on the second class of Choquet-like integrals, our results give a new version of Cauchy–Schwarz’s inequality for Sugeno integral without the comonotonicity condition based on the multiplication operator. |
| result_subspec |
WOS |
| RIV |
BA |
| FORD0 |
10000 |
| FORD1 |
10100 |
| FORD2 |
10102 |
| reportyear |
2020 |
| num_of_auth |
2 |
| inst_support |
RVO:67985556 |
| permalink |
http://hdl.handle.net/11104/0298081 |
| confidential |
S |
| mrcbT16-e |
COMPUTERSCIENCE.INTERDISCIPLINARYAPPLICATIONS|COMPUTERSCIENCE.ARTIFICIALINTELLIGENCE |
| mrcbT16-f |
1.732 |
| mrcbT16-g |
0.352 |
| mrcbT16-h |
5 |
| mrcbT16-i |
0.00642 |
| mrcbT16-j |
0.52 |
| mrcbT16-k |
2517 |
| mrcbT16-s |
0.759 |
| mrcbT16-4 |
Q2 |
| mrcbT16-5 |
1.375 |
| mrcbT16-6 |
261 |
| mrcbT16-7 |
Q2 |
| mrcbT16-B |
31.956 |
| mrcbT16-C |
56.3 |
| mrcbT16-D |
Q3 |
| mrcbT16-E |
Q2 |
| mrcbT16-P |
57.308 |
| arlyear |
2015 |
| mrcbU14 |
84939997651 SCOPUS |
| mrcbU24 |
PUBMED |
| mrcbU34 |
000354500300014 WOS |
| mrcbU63 |
cav_un_epca*0258368 Soft Computing 1432-7643 1433-7479 Roč. 19 č. 6 2015 1627 1634 Springer |
|