| bibtype |
J -
Journal Article
|
| ARLID |
0506954 |
| utime |
20240103222330.8 |
| mtime |
20190726235959.9 |
| SCOPUS |
84922728866 |
| WOS |
000350929100010 |
| DOI |
10.1016/j.ins.2014.12.056 |
| title
(primary) (eng) |
Pseudo-fractional integral inequality of Chebyshev type |
| specification |
| page_count |
8 s. |
| media_type |
P |
|
| serial |
| ARLID |
cav_un_epca*0256752 |
| ISSN |
0020-0255 |
| title
|
Information Sciences |
| volume_id |
301 (2015) |
| page_num |
161-168 |
| publisher |
|
|
| keyword |
Choquet integral |
| keyword |
Sugeno integral |
| keyword |
Monotone measure |
| author
(primary) |
| ARLID |
cav_un_auth*0261431 |
| share |
40 |
| name1 |
Agahi |
| name2 |
H. |
| country |
IR |
|
| author
|
| ARLID |
cav_un_auth*0348647 |
| share |
30 |
| name1 |
Babakhani |
| name2 |
A. |
| country |
IR |
|
| author
|
| ARLID |
cav_un_auth*0101163 |
| full_dept (cz) |
Ekonometrie |
| full_dept |
Department of Econometrics |
| department (cz) |
E |
| department |
E |
| full_dept |
Department of Econometrics |
| share |
30 |
| name1 |
Mesiar |
| name2 |
Radko |
| institution |
UTIA-B |
| fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
| source |
|
| cas_special |
| abstract
(eng) |
In this paper, we give a general version of Chebyshev type inequality for pseudo-convolution integral on a semiring ([a,b],•,·). Our result is flexible enough to support both pseudo-integral and convolution integral, (e.g., fractional integral), thus closing the series of papers. It includes the corresponding results of Agahi et al. [1] as a special case. Finally, some concluding remarks are drawn and some open problems for further investigations are given. |
| result_subspec |
WOS |
| RIV |
BA |
| FORD0 |
10000 |
| FORD1 |
10100 |
| FORD2 |
10102 |
| reportyear |
2020 |
| num_of_auth |
3 |
| inst_support |
RVO:67985556 |
| permalink |
http://hdl.handle.net/11104/0298080 |
| confidential |
S |
| mrcbT16-e |
COMPUTERSCIENCE.INFORMATIONSYSTEMS |
| mrcbT16-f |
3.683 |
| mrcbT16-g |
0.855 |
| mrcbT16-h |
4.7 |
| mrcbT16-i |
0.03697 |
| mrcbT16-j |
0.943 |
| mrcbT16-k |
16792 |
| mrcbT16-s |
1.960 |
| mrcbT16-4 |
Q1 |
| mrcbT16-5 |
2.638 |
| mrcbT16-6 |
615 |
| mrcbT16-7 |
Q1 |
| mrcbT16-B |
80.228 |
| mrcbT16-C |
94.8 |
| mrcbT16-D |
Q1 |
| mrcbT16-E |
Q1 |
| mrcbT16-P |
94.792 |
| arlyear |
2015 |
| mrcbU14 |
84922728866 SCOPUS |
| mrcbU24 |
PUBMED |
| mrcbU34 |
000350929100010 WOS |
| mrcbU63 |
cav_un_epca*0256752 Information Sciences 0020-0255 1872-6291 Roč. 301 2015 161 168 Elsevier |
|