bibtype J - Journal Article
ARLID 0506954
utime 20240103222330.8
mtime 20190726235959.9
SCOPUS 84922728866
WOS 000350929100010
DOI 10.1016/j.ins.2014.12.056
title (primary) (eng) Pseudo-fractional integral inequality of Chebyshev type
specification
page_count 8 s.
media_type P
serial
ARLID cav_un_epca*0256752
ISSN 0020-0255
title Information Sciences
volume_id 301 (2015)
page_num 161-168
publisher
name Elsevier
keyword Choquet integral
keyword Sugeno integral
keyword Monotone measure
author (primary)
ARLID cav_un_auth*0261431
share 40
name1 Agahi
name2 H.
country IR
author
ARLID cav_un_auth*0348647
share 30
name1 Babakhani
name2 A.
country IR
author
ARLID cav_un_auth*0101163
full_dept (cz) Ekonometrie
full_dept Department of Econometrics
department (cz) E
department E
full_dept Department of Econometrics
share 30
name1 Mesiar
name2 Radko
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2019/E/mesiar-0506954.pdf
cas_special
abstract (eng) In this paper, we give a general version of Chebyshev type inequality for pseudo-convolution integral on a semiring ([a,b],•,·). Our result is flexible enough to support both pseudo-integral and convolution integral, (e.g., fractional integral), thus closing the series of papers. It includes the corresponding results of Agahi et al. [1] as a special case. Finally, some concluding remarks are drawn and some open problems for further investigations are given.
result_subspec WOS
RIV BA
FORD0 10000
FORD1 10100
FORD2 10102
reportyear 2020
num_of_auth 3
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0298080
confidential S
mrcbT16-e COMPUTERSCIENCEINFORMATIONSYSTEMS
mrcbT16-j 0.943
mrcbT16-s 1.960
mrcbT16-4 Q1
mrcbT16-B 80.228
mrcbT16-C 94.792
mrcbT16-D Q1
mrcbT16-E Q1
arlyear 2015
mrcbU14 84922728866 SCOPUS
mrcbU24 PUBMED
mrcbU34 000350929100010 WOS
mrcbU63 cav_un_epca*0256752 Information Sciences 0020-0255 1872-6291 Roč. 301 2015 161 168 Elsevier