bibtype J - Journal Article
ARLID 0506959
utime 20240903170642.8
mtime 20190727235959.9
SCOPUS 85056180284
WOS 000449579800010
DOI 10.14736/kyb-2018-4-0798
title (primary) (eng) Estimation and bimodality testing in the cusp model
specification
page_count 17 s.
media_type E
serial
ARLID cav_un_epca*0297163
ISSN 0023-5954
title Kybernetika
volume_id 54
volume 4 (2018)
page_num 798-814
publisher
name Ústav teorie informace a automatizace AV ČR, v. v. i.
keyword multimodal distributions
keyword cusp model
keyword bimodality test
keyword reduced maximum likelihood estimation
author (primary)
ARLID cav_un_auth*0256753
full_dept (cz) Ekonometrie
full_dept (eng) Department of Econometrics
department (cz) E
department (eng) E
share 100
name1 Voříšek
name2 Jan
institution UTIA-B
country CZ
garant S
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
source_type pdf
url http://library.utia.cas.cz/separaty/2019/E/vorisek-0506959.pdf
source_size 4311 kB
source
url https://www.kybernetika.cz/content/2018/4/798
cas_special
project
ARLID cav_un_auth*0281000
project_id GBP402/12/G097
agency GA ČR
country CZ
abstract (eng) The probability density function of the stochastic cusp model belongs to the class of generalized exponential distributions. It accommodates variable skewness, kurtosis, and bimodality. A statistical test for bimodality of the stochastic cusp model using the maximum likelihood estimation and delta method for Cardan’s discriminant is introduced in this paper, as is a necessary condition for bimodality, which can be used for simplified testing to reject bimodality. Numerical maximum likelihood estimation of the cusp model is simplified by analytical reduction of the parameter space dimension, and connection to the method of moment estimates is shown. A simulation study is used to determine the size and power of the proposed tests and to compare pertinence among different tests for various parameter settings.\n
result_subspec WOS
RIV BA
FORD0 10000
FORD1 10100
FORD2 10103
reportyear 2020
num_of_auth 1
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0298077
cooperation
ARLID cav_un_auth*0377667
name Katedra pravděpodobnosti a statistiky MFF UK
institution KPMS MFF UK
country CZ
confidential S
mrcbC86 3+4 Article Computer Science Cybernetics
mrcbC91 A
mrcbT16-e COMPUTERSCIENCECYBERNETICS
mrcbT16-j 0.174
mrcbT16-s 0.268
mrcbT16-B 15.991
mrcbT16-D Q4
mrcbT16-E Q4
arlyear 2018
mrcbU14 85056180284 SCOPUS
mrcbU24 PUBMED
mrcbU34 000449579800010 WOS
mrcbU56 pdf 4311 kB
mrcbU63 cav_un_epca*0297163 Kybernetika 0023-5954 Roč. 54 č. 4 2018 798 814 Ústav teorie informace a automatizace AV ČR, v. v. i.