bibtype C - Conference Paper (international conference)
ARLID 0507111
utime 20240103222342.6
mtime 20190731235959.9
SCOPUS 85061163500
DOI 10.1007/978-3-030-10925-7_16
title (primary) (eng) Multiple Instance Learning with Bag-Level Randomized Trees
specification
page_count 14 s.
media_type P
serial
ARLID cav_un_epca*0507110
ISBN 978-3-030-10925-7
title Machine Learning and Knowledge Discovery in Databases
page_num 259-272
publisher
place Cham
name Springer International Publishing
year 2019
editor
name1 Berlingerio
name2 M.
editor
name1 Bonchi
name2 F.
editor
name1 Gärtner
name2 T.
editor
name1 Hurley
name2 N.
editor
name1 Ifrim
name2 G.
keyword Multiple instance learning
keyword randomized trees
keyword classification
author (primary)
ARLID cav_un_auth*0352238
name1 Komárek
name2 T.
country CZ
author
ARLID cav_un_auth*0101197
name1 Somol
name2 Petr
full_dept (cz) Rozpoznávání obrazu
full_dept Department of Pattern Recognition
department (cz) RO
department RO
institution UTIA-B
full_dept Department of Pattern Recognition
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2019/RO/somol-0507111.pdf
cas_special
abstract (eng) Knowledge discovery in databases with a flexible structure poses a great challenge to machine learning community. Multiple Instance Learning (MIL) aims at learning from samples (called bags) represented by multiple feature vectors (called instances) as opposed to single feature vectors characteristic for the traditional data representation. This relaxation turns out to be useful in formulating many machine learning problems including classification of molecules, cancer detection from tissue images or identification of malicious network communications. However, despite the recent progress in this area, the current set of MIL tools still seems to be very application specific and/or burdened with many tuning parameters or processing steps. In this paper, we propose a simple, yet effective tree-based algorithm for solving MIL classification problems. Empirical evaluation against 28 classifiers on 29 publicly available benchmark datasets shows a high level performance of the proposed solution even with its default parameter settings.
action
ARLID cav_un_auth*0377819
name Joint European Conference on Machine Learning and Knowledge Discovery in Databases (ECML PKDD)
dates 20180910
mrcbC20-s 20180914
place Dublin
country IE
RIV BC
FORD0 20000
FORD1 20200
FORD2 20204
reportyear 2020
num_of_auth 2
presentation_type PR
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0298754
confidential S
arlyear 2019
mrcbU14 85061163500 SCOPUS
mrcbU24 PUBMED
mrcbU34 WOS
mrcbU63 cav_un_epca*0507110 Machine Learning and Knowledge Discovery in Databases Springer International Publishing 2019 Cham 259 272 978-3-030-10925-7 Lecture Notes in Computer Science 11051
mrcbU67 340 Berlingerio M.
mrcbU67 340 Bonchi F.
mrcbU67 340 Gärtner T.
mrcbU67 340 Hurley N.
mrcbU67 340 Ifrim G.