bibtype C - Conference Paper (international conference)
ARLID 0507223
utime 20240103222349.9
mtime 20190803235959.9
WOS 000418391500002
title (primary) (eng) Causality and Intervention in Business Process Management
specification
page_count 10 s.
media_type P
serial
ARLID cav_un_epca*0480157
ISBN 978-80-7464-932-5
title Proceedings of the 20th Czech-Japan Seminar on Data Analysis and Decision Making under Uncertainty
page_num 15-24
publisher
place Ostrava
name University of Ostrava
year 2017
editor
name1 Novák
name2 V.
editor
name1 Inuiguchi
name2 M.
editor
name1 Štěpnička
name2 M.
keyword Compositional model
keyword Operator of composition,
keyword Causality
keyword Conditioning
keyword Intervention
author (primary)
ARLID cav_un_auth*0095925
share 50
name1 Bína
name2 V.
country CZ
author
ARLID cav_un_auth*0101118
full_dept Department of Decision Making Theory
share 50
name1 Jiroušek
name2 Radim
institution UTIA-B
full_dept (cz) Matematická teorie rozhodování
full_dept Department of Decision Making Theory
department (cz) MTR
department MTR
garant K
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2019/MTR/jirousek-0507223.pdf
cas_special
project
ARLID cav_un_auth*0353269
project_id GA15-00215S
agency GA ČR
country CZ
abstract (eng) The paper presents an algebraic approach to the modeling of causality in systems of stochastic variables. The methodology is based on an operator of a composition that provides the possibility of composing a multidimensional distribution from low-dimensional building blocks taking advantage of the dependence structure of the problem variables. The authors formally define and demonstrate on a hypothetical example a surprisingly elegant unifying approach to conditioning by a single variable and the evaluation of the effect of an intervention. Both operations are realized by the composition with a degenerated distribution and differ only in the sequence in which the operator of the composition is performed.
action
ARLID cav_un_auth*0355859
name Czech-Japan Seminar on Data Analysis and Decision Making under Uncertainty /20./
dates 20170917
mrcbC20-s 20170920
place Pardubice
country CZ
RIV IN
FORD0 10000
FORD1 10200
FORD2 10201
reportyear 2020
num_of_auth 2
presentation_type PR
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0298570
confidential S
mrcbC86 n.a. Proceedings Paper Computer Science Artificial Intelligence|Mathematics Applied
mrcbC86 n.a. Proceedings Paper Computer Science Artificial Intelligence|Mathematics Applied
mrcbC86 n.a. Proceedings Paper Computer Science Artificial Intelligence|Mathematics Applied
arlyear 2017
mrcbU14 SCOPUS
mrcbU24 PUBMED
mrcbU34 000418391500002 WOS
mrcbU63 cav_un_epca*0480157 Proceedings of the 20th Czech-Japan Seminar on Data Analysis and Decision Making under Uncertainty University of Ostrava 2017 Ostrava 15 24 978-80-7464-932-5
mrcbU67 340 Novák V.
mrcbU67 340 Inuiguchi M.
mrcbU67 340 Štěpnička M.