bibtype |
C -
Conference Paper (international conference)
|
ARLID |
0507247 |
utime |
20240103222351.7 |
mtime |
20190805235959.9 |
SCOPUS |
84988450716 |
WOS |
000390837600060 |
DOI |
10.1007/978-3-319-42972-4_60 |
title
(primary) (eng) |
Composition Operator for Credal Sets Reconsidered |
specification |
page_count |
8 s. |
media_type |
P |
|
serial |
ARLID |
cav_un_epca*0507246 |
ISBN |
978-3-319-42971-7 |
ISSN |
2194-5357 |
title
|
Soft Methods for Data Science |
page_num |
487-494 |
publisher |
place |
Cham |
name |
Springer |
year |
2017 |
|
editor |
name1 |
Ferraro |
name2 |
M. B. |
|
editor |
|
editor |
|
editor |
name1 |
Gagolewski |
name2 |
M. |
|
editor |
|
editor |
name1 |
Grzegorzewski |
name2 |
P. |
|
editor |
name1 |
Hryniewicz |
name2 |
Ol. |
|
|
keyword |
Credal Sets |
keyword |
Multidimensional models |
keyword |
Graphical Markov Models |
author
(primary) |
ARLID |
cav_un_auth*0101223 |
name1 |
Vejnarová |
name2 |
Jiřina |
full_dept (cz) |
Matematická teorie rozhodování |
full_dept (eng) |
Department of Decision Making Theory |
department (cz) |
MTR |
department (eng) |
MTR |
institution |
UTIA-B |
full_dept |
Department of Decision Making Theory |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
source |
|
cas_special |
project |
ARLID |
cav_un_auth*0332303 |
project_id |
GA16-12010S |
agency |
GA ČR |
country |
CZ |
|
abstract
(eng) |
This paper is the second attempt to introduce the composition operator, already known from probability, possibility, evidence and valuation-based systems theories, also for credal sets. We try to avoid the discontinuity which was present in the original definition, but simultaneously to keep all the properties enabling us to design compositional models in a way analogous to those in the above-mentioned theories. These compositional models are aimed to be an alternative to Graphical Markov Models. Theoretical results achieved in this paper are illustrated by an example. |
action |
ARLID |
cav_un_auth*0377913 |
name |
International Conference on Soft Methods in Probability and Statistics-SMPS 2016 /8./ |
dates |
20160912 |
mrcbC20-s |
20160914 |
place |
Roma |
country |
IT |
|
RIV |
BA |
FORD0 |
10000 |
FORD1 |
10100 |
FORD2 |
10101 |
reportyear |
2020 |
num_of_auth |
1 |
presentation_type |
PR |
inst_support |
RVO:67985556 |
permalink |
http://hdl.handle.net/11104/0298572 |
confidential |
S |
article_num |
60 |
mrcbC86 |
3+4 Proceedings Paper Computer Science Artificial Intelligence|Robotics|Statistics Probability |
mrcbC86 |
3+4 Proceedings Paper Computer Science Artificial Intelligence|Robotics|Statistics Probability |
mrcbC86 |
3+4 Proceedings Paper Computer Science Artificial Intelligence|Robotics|Statistics Probability |
arlyear |
2017 |
mrcbU14 |
84988450716 SCOPUS |
mrcbU24 |
PUBMED |
mrcbU34 |
000390837600060 WOS |
mrcbU63 |
cav_un_epca*0507246 Soft Methods for Data Science Springer 2017 Cham 487 494 978-3-319-42971-7 Advances in Intelligent Systems and Computing 456 2194-5357 |
mrcbU67 |
340 Ferraro M. B. |
mrcbU67 |
340 Giordani P. |
mrcbU67 |
340 Vantaggi B. |
mrcbU67 |
340 Gagolewski M. |
mrcbU67 |
340 Gil M. Á. |
mrcbU67 |
340 Grzegorzewski P. |
mrcbU67 |
340 Hryniewicz Ol. |
|