bibtype C - Conference Paper (international conference)
ARLID 0507247
utime 20240103222351.7
mtime 20190805235959.9
SCOPUS 84988450716
WOS 000390837600060
DOI 10.1007/978-3-319-42972-4_60
title (primary) (eng) Composition Operator for Credal Sets Reconsidered
specification
page_count 8 s.
media_type P
serial
ARLID cav_un_epca*0507246
ISBN 978-3-319-42971-7
ISSN 2194-5357
title Soft Methods for Data Science
page_num 487-494
publisher
place Cham
name Springer
year 2017
editor
name1 Ferraro
name2 M. B.
editor
name1 Giordani
name2 P.
editor
name1 Vantaggi
name2 B.
editor
name1 Gagolewski
name2 M.
editor
name1 Gil
name2 M. Á.
editor
name1 Grzegorzewski
name2 P.
editor
name1 Hryniewicz
name2 Ol.
keyword Credal Sets
keyword Multidimensional models
keyword Graphical Markov Models
author (primary)
ARLID cav_un_auth*0101223
name1 Vejnarová
name2 Jiřina
full_dept (cz) Matematická teorie rozhodování
full_dept (eng) Department of Decision Making Theory
department (cz) MTR
department (eng) MTR
institution UTIA-B
full_dept Department of Decision Making Theory
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2019/MTR/vejnarova-0507247.pdf
cas_special
project
ARLID cav_un_auth*0332303
project_id GA16-12010S
agency GA ČR
country CZ
abstract (eng) This paper is the second attempt to introduce the composition operator, already known from probability, possibility, evidence and valuation-based systems theories, also for credal sets. We try to avoid the discontinuity which was present in the original definition, but simultaneously to keep all the properties enabling us to design compositional models in a way analogous to those in the above-mentioned theories. These compositional models are aimed to be an alternative to Graphical Markov Models. Theoretical results achieved in this paper are illustrated by an example.
action
ARLID cav_un_auth*0377913
name International Conference on Soft Methods in Probability and Statistics-SMPS 2016 /8./
dates 20160912
mrcbC20-s 20160914
place Roma
country IT
RIV BA
FORD0 10000
FORD1 10100
FORD2 10101
reportyear 2020
num_of_auth 1
presentation_type PR
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0298572
confidential S
article_num 60
mrcbC86 3+4 Proceedings Paper Computer Science Artificial Intelligence|Robotics|Statistics Probability
mrcbC86 3+4 Proceedings Paper Computer Science Artificial Intelligence|Robotics|Statistics Probability
mrcbC86 3+4 Proceedings Paper Computer Science Artificial Intelligence|Robotics|Statistics Probability
arlyear 2017
mrcbU14 84988450716 SCOPUS
mrcbU24 PUBMED
mrcbU34 000390837600060 WOS
mrcbU63 cav_un_epca*0507246 Soft Methods for Data Science Springer 2017 Cham 487 494 978-3-319-42971-7 Advances in Intelligent Systems and Computing 456 2194-5357
mrcbU67 340 Ferraro M. B.
mrcbU67 340 Giordani P.
mrcbU67 340 Vantaggi B.
mrcbU67 340 Gagolewski M.
mrcbU67 340 Gil M. Á.
mrcbU67 340 Grzegorzewski P.
mrcbU67 340 Hryniewicz Ol.