bibtype J - Journal Article
ARLID 0507380
utime 20240103222401.8
mtime 20190807235959.9
title (primary) (eng) Estimating Stochastic Cusp Model Using Transition Density
specification
page_count 12 s.
media_type P
serial
ARLID cav_un_epca*0293025
ISSN 1212-074X
title Bulletin of the Czech Econometric Society
volume_id 18
volume 28 (2011)
page_num 84-95
keyword Stochastic Catastrophe Model
keyword Cusp Model of Economy
keyword Transition Density
author (primary)
ARLID cav_un_auth*0256753
full_dept (cz) Ekonometrie
full_dept (eng) Department of Econometrics
department (cz) E
department (eng) E
share 100
name1 Voříšek
name2 Jan
institution UTIA-B
country CZ
garant K
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url https://ideas.repec.org/a/czx/journl/v18y2011i28id172.html
cas_special
project
ARLID cav_un_auth*0253998
project_id GD402/09/H045
agency GA ČR
abstract (eng) Paper focuses on an econometric model known as the cusp within standard catastrophe theory. This model allows discontinuous change in a dependent variable for a small continuous change in parameters. This model is given by stochastic di erential equation with cubic drift. The closed-form solution of density for this process is known only in the stationary case and this density belongs to the class of generalized exponential distributions, which allows for skewness, di erent tail shapes and multiple equilibria. The transition density is approximated by the finite difference method and parameters are estimated using the maximum likelihood principle. An empirical example deals with the crash known as Black Monday, where parameters of the drift are driven by market fundamentals.
result_subspec WOS
RIV AH
FORD0 50000
FORD1 50200
FORD2 50202
reportyear 2020
num_of_auth 1
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0298747
confidential S
arlyear 2011
mrcbU14 SCOPUS
mrcbU24 PUBMED
mrcbU34 WOS
mrcbU63 cav_un_epca*0293025 Bulletin of the Czech Econometric Society 1212-074X Roč. 18 č. 28 2011 84 95