bibtype J - Journal Article
ARLID 0507521
utime 20240103222414.4
mtime 20190812235959.9
SCOPUS 85063408023
WOS 000493351000003
DOI 10.1093/ectj/utz002
title (primary) (eng) Quantile coherency: A general measure for dependence between cyclical economic variables
specification
page_count 22 s.
media_type P
serial
ARLID cav_un_epca*0311554
ISSN 1368-4221
title Econometrics Journal
volume_id 22
volume 2 (2019)
page_num 131-152
publisher
name Oxford University Press
keyword cross-spectral analysis
keyword ranks
keyword copula
keyword stock market
keyword risk
author (primary)
ARLID cav_un_auth*0242028
full_dept Department of Econometrics
name1 Baruník
name2 Jozef
institution UTIA-B
full_dept (cz) Ekonometrie
full_dept (eng) Department of Econometrics
department (cz) E
department (eng) E
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0378637
name1 Kley
name2 T.
country GB
source
url http://library.utia.cas.cz/separaty/2019/E/barunik-0507521.pdf
source
url https://academic.oup.com/ectj/article-abstract/22/2/131/5303852
cas_special
project
ARLID cav_un_auth*0350251
project_id GA16-14179S
agency GA ČR
country CZ
abstract (eng) In this paper, we introduce quantile coherency to measure general dependence structures emerging in the joint distribution in the frequency domain and argue that this type of dependence is natural for economic time series but remains invisible when only the traditional analysis is employed. We define estimators that capture the general dependence structure, provide a detailed analysis of their asymptotic properties, and discuss how to conduct inference for a general class of possibly nonlinear processes. In an empirical illustration we examine the dependence of bivariate stock market returns and shed new light on measurement of tail risk in financial markets. We also provide a modelling exercise to illustrate how applied researchers can benefit from using quantile coherency when assessing time series models.
result_subspec WOS
RIV AH
FORD0 50000
FORD1 50200
FORD2 50201
reportyear 2020
num_of_auth 2
mrcbC52 4 A hod sml 4ah 4as 20231122144157.0
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0298675
cooperation
ARLID cav_un_auth*0301841
name University of Bristol
country GB
mrcbC64 1 Department of Econometrics UTIA-B 50202 ECONOMICS
confidential S
contract
name Standard Licence - Copyright
date 20190128
note exclusive licence for the full period of copyright
mrcbC86 1* Article Economics|Mathematics Interdisciplinary Applications|Social Sciences Mathematical Methods|Statistics Probability
mrcbC91 C
mrcbT16-e ECONOMICS|MATHEMATICSINTERDISCIPLINARYAPPLICATIONS|SOCIALSCIENCESMATHEMATICALMETHODS|STATISTICSPROBABILITY
mrcbT16-j 2.067
mrcbT16-s 2.926
mrcbT16-B 88.244
mrcbT16-D Q1
mrcbT16-E Q1*
arlyear 2019
mrcbTft \nSoubory v repozitáři: barunik-0507521.pdf, barunik-0507521 -licence.pdf
mrcbU14 85063408023 SCOPUS
mrcbU24 PUBMED
mrcbU34 000493351000003 WOS
mrcbU63 cav_un_epca*0311554 Econometrics Journal 1368-4221 1368-423X Roč. 22 č. 2 2019 131 152 Oxford University Press