bibtype J - Journal Article
ARLID 0507670
utime 20240103222427.4
mtime 20190819235959.9
SCOPUS 85071714198
WOS 000483797700024
DOI 10.1002/mrm.27874
title (primary) (eng) Spatially regularized estimation of the tissue homogeneity model parameters in DCE‐MRI using proximal minimization
specification
page_count 16 s.
media_type P
serial
ARLID cav_un_epca*0257207
ISSN 0740-3194
title Magnetic Resonance in Medicine
volume_id 82
volume 6 (2019)
page_num 2257-2272
publisher
name Wiley
keyword DCE‐MRI
keyword perfusion parameter estimation
keyword proximal methods
keyword spatial regularization
keyword tissue homogeneity model
keyword total variation
author (primary)
ARLID cav_un_auth*0312355
name1 Bartoš
name2 Michal
institution UTIA-B
full_dept (cz) Zpracování obrazové informace
full_dept (eng) Department of Image Processing
department (cz) ZOI
department (eng) ZOI
full_dept Department of Image Processing
country CZ
share 50
garant K
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0298515
name1 Rajmic
name2 P.
country CZ
share 20
author
ARLID cav_un_auth*0108377
name1 Šorel
name2 Michal
institution UTIA-B
full_dept (cz) Zpracování obrazové informace
full_dept Department of Image Processing
department (cz) ZOI
department ZOI
full_dept Department of Image Processing
share 10
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0355652
name1 Mangová
name2 M.
country CZ
share 4
author
ARLID cav_un_auth*0277114
name1 Keunen
name2 O.
country LU
share 1
author
ARLID cav_un_auth*0277120
name1 Jiřík
name2 Radovan
institution UPT-D
full_dept (cz) D3: Magnetická rezonance a Kryogenika
full_dept D3: Magnetic Resonance and Cryogenics
full_dept Magnetic Resonance and Cryogenics
share 15
fullinstit Ústav přístrojové techniky AV ČR, v. v. i.
source
url https://onlinelibrary.wiley.com/doi/10.1002/mrm.27874
cas_special
project
project_id LO1212
agency GA MŠk
country CZ
ARLID cav_un_auth*0303710
project
project_id MSM100751802
agency AV ČR
country CZ
ARLID cav_un_auth*0359895
project
project_id EF16_013/0001775
agency GA MŠk
country CZ
ARLID cav_un_auth*0362565
project
project_id ED0017/01/01
agency GA MŠk
ARLID cav_un_auth*0266369
project
project_id GA16-13830S
agency GA ČR
country CZ
ARLID cav_un_auth*0338628
abstract (eng) The Tofts and the extended Tofts models are the pharmacokinetic models commonly used in dynamic contrast‐enhanced MRI (DCE‐MRI) perfusion analysis, although they do not provide two important biological markers, namely, the plasmaflow and the permeability‐surface area product. Estimates of such markers are possible using advanced pharmacokinetic models describing the vascular distribution phase, such as the tissue homogeneity model. However, the disadvantage of theadvanced models lies in biased and uncertain estimates, especially when the estimates are computed voxelwise. The goal of this work is to improve the reliability of the estimates by including information from neighboring voxels. Information from the neighboring voxels is incorporated in the estimation process through spatial regularization in the form of total variation. The spatial regularization is applied on five maps of perfusion parameters estimated using the tissue homogeneity model. Since the total variation is not differentiable, two proximal techniques of convex optimization are used to solve the problem numerically. The proposed algorithm helps to reduce noise in the estimated perfusionparameter maps together with improving accuracy of the estimates. These conclusions are proved using a numerical phantom. In addition, experiments on real data\nshow improved spatial consistency and readability of perfusion maps without considerable lowering of the quality of fit. The reliability of the DCE‐MRI perfusion analysis using the tissue homogeneity model can be improved by employing spatial regularization. The proposed utilization of modern optimization techniques implies only slightly higher computational costs compared to the standard approach without spatial regularization.
result_subspec WOS
RIV FS
FORD0 20000
FORD1 20600
FORD2 20601
reportyear 2020
num_of_auth 6
mrcbC47 UPT-D 20000 20600 20601
mrcbC52 4 A hod sml 4ah 4as 20231122144204.8
inst_support RVO:67985556
inst_support RVO:68081731
permalink http://hdl.handle.net/11104/0298678
cooperation
ARLID cav_un_auth*0314450
name Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií
cooperation
ARLID cav_un_auth*0346020
name Luxembourg Institute of Health
country LU
mrcbC64 1 Magnetic Resonance and Cryogenics UPT-D 30224 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
mrcbC64 1 Department of Image Processing UTIA-B 30224 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
confidential S
contract
name COPYRIGHT TRANSFER AGREEMENT
date 20190604
mrcbC83 RIV/68081731:_____/19:00507670!RIV20-MSM-68081731 192327327 doplnění projektů UPT-D
mrcbC86 3+4 Article Radiology Nuclear Medicine Medical Imaging
mrcbC91 C
mrcbT16-e RADIOLOGYNUCLEARMEDICINEMEDICALIMAGING
mrcbT16-j 1.002
mrcbT16-s 1.751
mrcbT16-B 69.736
mrcbT16-D Q2
mrcbT16-E Q1
arlyear 2019
mrcbTft \nSoubory v repozitáři: bartos-507670.pdf, bartos-0507670 -LicenseCopy.pdf
mrcbU14 85071714198 SCOPUS
mrcbU24 31317577 PUBMED
mrcbU34 000483797700024 WOS
mrcbU63 cav_un_epca*0257207 Magnetic Resonance in Medicine 0740-3194 1522-2594 Roč. 82 č. 6 2019 2257 2272 Wiley