bibtype C - Conference Paper (international conference)
ARLID 0508606
utime 20241106135746.7
mtime 20190919235959.9
SCOPUS 85089600355
WOS 000558710000049
DOI 10.2991/eusflat-19.2019.49
title (primary) (eng) Translating Classical Probability Logics into Modal Fuzzy Logics
specification
page_count 8 s.
media_type E
serial
ARLID cav_un_epca*0508605
ISBN 978-94-6252-770-6
ISSN 2589-6644
title Proceedings of the 11th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT 2019)
part_title Atlantis Studies in Uncertainty Modelling
page_num 342-349
publisher
place Amsterdam
name Atlantis Press
year 2019
editor
name1 Štěpnička
name2 M.
keyword Mathematical Fuzzy Logic
keyword Logics of uncertainty
keyword Lukasiewicz logic
keyword Probability logics
keyword Two-layered modal logics
author (primary)
ARLID cav_un_auth*0312526
name1 Baldi
name2 Paolo
institution UIVT-O
full_dept (cz) Oddělení teoretické informatiky
full_dept (eng) Department of Theoretical Computer Science
full_dept Department of Theoretical Computer Science
country AT
fullinstit Ústav informatiky AV ČR, v. v. i.
author
ARLID cav_un_auth*0100737
name1 Cintula
name2 Petr
institution UIVT-O
full_dept (cz) Oddělení teoretické informatiky
full_dept Department of Theoretical Computer Science
full_dept Department of Theoretical Computer Science
fullinstit Ústav informatiky AV ČR, v. v. i.
author
ARLID cav_un_auth*0293476
name1 Noguera
name2 Carles
institution UTIA-B
full_dept (cz) Matematická teorie rozhodování
full_dept Department of Decision Making Theory
department (cz) MTR
department MTR
full_dept Department of Decision Making Theory
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url https://download.atlantis-press.com/article/125914819.pdf
cas_special
project
project_id GA17-04630S
agency GA ČR
ARLID cav_un_auth*0349495
abstract (eng) This paper is a contribution to the study of two distinct kinds of modal logics for modeling uncertainty. Both approaches use logics with a two-layered syntax, but while one employs classical logic on both levels, the other involves a suitable system of fuzzy logic in the upper layer. We take two prominent examples of the former approach, probability logics Pr_lin and Pr_pol, and build explicit faithful translations into, respectively, the two-layered modal fuzzy logics given by Lukasiewicz logic with 4 and its expansion with the product connective. We first prove the faithfulness of both translations using semantics of all four involved logics. Then, we use the axiomatization of Pr_lin and a hypersequent presentation of the two-layered system over Lukasiewicz logic to obtain an alternative syntactical proof.
action
ARLID cav_un_auth*0379993
name EUSFLAT 2019. Conference of the European Society for Fuzzy Logic and Technology /11./
dates 20190909
mrcbC20-s 20190913
place Praha
country CZ
RIV IN
FORD0 10000
FORD1 10200
FORD2 10201
reportyear 2020
mrcbC47 UTIA-B 10000 10100 10101
mrcbC52 4 O 4o 20241106135746.7
mrcbC55 UTIA-B BA
inst_support RVO:67985807
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0299464
confidential S
mrcbC83 RIV/67985807:_____/19:00508606!RIV20-AV0-67985807 192162512 Doplněn WOS a SCOPUS kód
mrcbC83 RIV/67985807:_____/19:00508606!RIV20-GA0-67985807 192182641 Doplněn WOS a SCOPUS kód
mrcbC83 RIV/67985556:_____/19:00508606!RIV20-AV0-67985556 192162349 Doplněn WOS a SCOPUS kód UTIA-B
mrcbC83 RIV/67985556:_____/19:00508606!RIV20-GA0-67985556 192182558 Doplněn WOS a SCOPUS kód UTIA-B
mrcbC86 n.a. Proceedings Paper Computer Science Artificial Intelligence|Computer Science Theory Methods|Mathematics Applied
arlyear 2019
mrcbTft \nSoubory v repozitáři: 0508606-aoa.pdf
mrcbU14 85089600355 SCOPUS
mrcbU24 PUBMED
mrcbU34 000558710000049 WOS
mrcbU63 cav_un_epca*0508605 Proceedings of the 11th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT 2019) 978-94-6252-770-6 2589-6644 342 349 Amsterdam Atlantis Press 2019 Atlantis Studies in Uncertainty Modelling
mrcbU67 340 Štěpnička M.