bibtype J - Journal Article
ARLID 0508907
utime 20240103222619.0
mtime 20190927235959.9
SCOPUS 85072665108
WOS 000487789000023
DOI 10.1049/iet-ipr.2019.0250
title (primary) (eng) Texture Spectral Similarity Criteria
specification
page_count 10 s.
media_type P
serial
ARLID cav_un_epca*0320541
ISSN 1751-9659
title IET Image Processing
volume_id 13
volume 11 (2019)
page_num 1998-2007
publisher
name Wiley
keyword Spectral similarity criterion
keyword bidirectional Texture Function
keyword hyper-spectral data
keyword texture modelling
author (primary)
ARLID cav_un_auth*0283206
name1 Havlíček
name2 Michal
institution UTIA-B
full_dept (cz) Rozpoznávání obrazu
full_dept (eng) Department of Pattern Recognition
department (cz) RO
department (eng) RO
full_dept Department of Pattern Recognition
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101093
name1 Haindl
name2 Michal
institution UTIA-B
full_dept (cz) Rozpoznávání obrazu
full_dept Department of Pattern Recognition
department (cz) RO
department RO
full_dept Department of Pattern Recognition
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2019/RO/haindl-0508907.pdf
source
url https://digital-library.theiet.org/content/journals/10.1049/iet-ipr.2019.0250
cas_special
project
ARLID cav_un_auth*0376011
project_id GA19-12340S
agency GA ČR
country CZ
abstract (eng) New similarity criteria capable of assessing spectral modelling plausibility of colour, Bidirectional Texture Functions (BTF), and hyper-spectral textures are presented. The criteria credibly compare the multi-spectral pixel values of the textures. They simultaneously consider the pixels of similar values and their mutual ratios. It allows support of the optimal modelling or acquisition setup development by comparing the original data with its synthetic simulations. Analytical applications of the criteria can be spectral-based texture retrieval or classification. The suggested criteria together with existing alternatives are extensively tested and compared on a wide variety of colour, BTF, and hyper-spectral textures. The performance quality of the criteria is examined in a long series of thousands specially designed monotonically degrading experiments where proposed ones outperform all tested alternatives.
result_subspec WOS
RIV BD
FORD0 20000
FORD1 20200
FORD2 20205
reportyear 2020
num_of_auth 2
mrcbC52 4 A hod sml 4ah 4as 20231122144259.7
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0299790
mrcbC64 1 Department of Pattern Recognition UTIA-B 10201 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
confidential S
contract
name Copyright agreement
date 20190607
note Journals Publication Agreement and Assignment of Copyright Form
mrcbC86 2 Article Economics
mrcbC91 C
mrcbT16-e COMPUTERSCIENCEARTIFICIALINTELLIGENCE|ENGINEERINGELECTRICALELECTRONIC|IMAGINGSCIENCEPHOTOGRAPHICTECHNOLOGY
mrcbT16-j 0.295
mrcbT16-s 0.442
mrcbT16-B 20.662
mrcbT16-D Q4
mrcbT16-E Q4
arlyear 2019
mrcbTft \nSoubory v repozitáři: haindl-0508907.pdf, haindl-0508907-copyright.pdf
mrcbU14 85072665108 SCOPUS
mrcbU24 PUBMED
mrcbU34 000487789000023 WOS
mrcbU63 cav_un_epca*0320541 IET Image Processing 1751-9659 1751-9667 Roč. 13 č. 11 2019 1998 2007 Wiley