bibtype M - Monography Chapter
ARLID 0510031
utime 20241106135750.1
mtime 20191029235959.9
DOI 10.1007/978-981-13-8319-9_10
title (primary) (eng) Simulated maximum likelihood estimation of agent-based models in economics and finance
specification
book_pages 458
page_count 24 s.
media_type P
serial
ARLID cav_un_epca*0510030
ISBN 978-981-13-8318-2
title Network Theory and Agent-Based Modeling in Economics and Finance
page_num 203-226
publisher
place Singapore
name Springer
year 2019
editor
name1 Chakrabarti
name2 A. S.
editor
name1 Pichl
name2 L.
editor
name1 Kaizoji
name2 T.
keyword simulation-based framework
keyword kernel methods
keyword economic models
author (primary)
ARLID cav_un_auth*0293468
full_dept Department of Econometrics
share 100 %
name1 Kukačka
name2 Jiří
institution UTIA-B
full_dept (cz) Ekonometrie
full_dept (eng) Econometrics
department (cz) E
department (eng) E
country CZ
garant A
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
cas_special
project
ARLID cav_un_auth*0351447
project_id GJ17-12386Y
agency GA ČR
country CZ
abstract (eng) This chapter presents a general simulation-based framework for estimation of agent-based models in economics and finance based on kernel methods. After discussing the distinguishing features between empirical estimation and calibration of economic models, the simulated maximum likelihood estimator is validated for utilization in agent-based econometrics. As the main advantage, the method allows for estimation of nonlinear models for which the analytical representation of the objective function does not exist. We test the properties and performance of the estimator in combination with the seminal Brock and Hommes (J Econ Dyn Control 22:1235–1274, 1998) asset pricing model, where the dynamics are governed by switching of agents between trading strategies based on the discrete choice approach. We also provide links to how the estimation method can be extended to multivariate macroeconomic optimization problems. Using simulation analysis, we show that the estimator consistently recovers the pseudo-true parameters with high estimation precision. We further study the impact of agents' memory on the estimation performance and show that while memory generally deteriorates the precision, the main properties of the estimator remain unaffected.
RIV AH
FORD0 50000
FORD1 50200
FORD2 50206
reportyear 2020
num_of_auth 1
mrcbC52 4 A sml 4as 20241106135750.1
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0301161
cooperation
ARLID cav_un_auth*0381675
name Univerzta Karlova, Fakulta sociálních věd, Institut ekonomických studií
institution IES FSV UK
country CZ
confidential S
contract
name copyright
date 20190503
arlyear 2019
mrcbTft \nSoubory v repozitáři: kukacka-0510031-copyright.pdf
mrcbU14 SCOPUS
mrcbU24 PUBMED
mrcbU34 WOS
mrcbU63 cav_un_epca*0510030 Network Theory and Agent-Based Modeling in Economics and Finance Springer 2019 Singapore 203 226 978-981-13-8318-2
mrcbU67 340 Chakrabarti A. S.
mrcbU67 340 Pichl L.
mrcbU67 340 Kaizoji T.