bibtype C - Conference Paper (international conference)
ARLID 0510483
utime 20241106135751.4
mtime 20191106235959.9
SCOPUS 85076157924
WOS 000582481300023
DOI 10.1007/978-3-030-33720-9_23
title (primary) (eng) Mutual Information-Based Texture Spectral Similarity Criterion
specification
page_count 13 s.
media_type P
serial
ARLID cav_un_epca*0510482
ISBN 978-3-030-33719-3
ISSN 0302-9743
title Advances in Visual Computing : 14th International Symposium on Visual Computing (ISVC 2019)
page_num 302-314
publisher
place Cham
name Springer
year 2019
editor
name1 Bebis
name2 G.
editor
name1 Boyle
name2 R.
editor
name1 Parvin
name2 B.
editor
name1 Koracin
name2 D.
keyword spectral similarity criterion
keyword Bidirectional Texture Functions
keyword texture
keyword mutual information
author (primary)
ARLID cav_un_auth*0101093
name1 Haindl
name2 Michal
institution UTIA-B
full_dept (cz) Rozpoznávání obrazu
full_dept (eng) Department of Pattern Recognition
department (cz) RO
department (eng) RO
full_dept Department of Pattern Recognition
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0283206
name1 Havlíček
name2 Michal
institution UTIA-B
full_dept (cz) RO
full_dept RO
full_dept Department of Pattern Recognition
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2019/RO/haindl-0510483.pdf
cas_special
project
project_id GA19-12340S
agency GA ČR
country CZ
ARLID cav_un_auth*0376011
abstract (eng) Fast novel texture spectral similarity criterion, capable of assessing spectral modeling resemblance of color and Bidirectional Texture Functions (BTF) textures, is presented. The criterion reliably compares the multi-spectral pixel values of two textures, and thus it allows to assist an optimal modeling or acquisition setup development by comparing the original data with its synthetic simulations. The suggested criterion, together with existing alternatives, is extensively tested in a long series of thousands specially designed monotonically degrading experiments moreover, successfully compared on a wide variety of color and BTF textures.
action
ARLID cav_un_auth*0382047
name International Symposium on Visual Computing (ISVC 2019) /14./
dates 20191007
mrcbC20-s 20191009
place Lake Tahoe
country US
RIV BD
FORD0 20000
FORD1 20200
FORD2 20205
reportyear 2020
num_of_auth 2
mrcbC52 4 A sml 4as 20241106135751.3
presentation_type PR
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0302679
confidential S
contract
name Contract Book Contributor Consent to Publish
date 20190904
article_num 23
arlyear 2019
mrcbTft \nSoubory v repozitáři: haindl-0510483-Contract_Book_Contributor_Consent_to_Publish_LNCS_SIP_MH.pdf
mrcbU14 85076157924 SCOPUS
mrcbU24 PUBMED
mrcbU34 000582481300023 WOS
mrcbU63 cav_un_epca*0510482 Advances in Visual Computing : 14th International Symposium on Visual Computing (ISVC 2019) 978-3-030-33719-3 0302-9743 1611-3349 302 314 Cham Springer 2019 Lecture Notes in Computer Science 11844
mrcbU67 340 Bebis G.
mrcbU67 340 Boyle R.
mrcbU67 340 Parvin B.
mrcbU67 340 Koracin D.