bibtype |
C -
Conference Paper (international conference)
|
ARLID |
0510488 |
utime |
20240103222838.1 |
mtime |
20191106235959.9 |
SCOPUS |
85076168125 |
WOS |
000582481300012 |
DOI |
10.1007/978-3-030-33720-9_12 |
title
(primary) (eng) |
View Dependent Surface Material Recognition |
specification |
page_count |
12 s. |
media_type |
P |
|
serial |
ARLID |
cav_un_epca*0510482 |
ISBN |
978-3-030-33719-3 |
ISSN |
0302-9743 |
title
|
Advances in Visual Computing : 14th International Symposium on Visual Computing (ISVC 2019) |
page_num |
156-167 |
publisher |
place |
Cham |
name |
Springer |
year |
2019 |
|
editor |
|
editor |
|
editor |
|
editor |
|
|
keyword |
convolutional neural network |
keyword |
texture recognition |
keyword |
Bidirectional Texture Function recognition |
author
(primary) |
ARLID |
cav_un_auth*0101165 |
name1 |
Mikeš |
name2 |
Stanislav |
institution |
UTIA-B |
full_dept (cz) |
Rozpoznávání obrazu |
full_dept (eng) |
Department of Pattern Recognition |
department (cz) |
RO |
department (eng) |
RO |
full_dept |
Department of Pattern Recognition |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0101093 |
name1 |
Haindl |
name2 |
Michal |
institution |
UTIA-B |
full_dept (cz) |
Rozpoznávání obrazu |
full_dept |
Department of Pattern Recognition |
department (cz) |
RO |
department |
RO |
full_dept |
Department of Pattern Recognition |
garant |
K |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
source |
|
cas_special |
project |
project_id |
GA19-12340S |
agency |
GA ČR |
country |
CZ |
ARLID |
cav_un_auth*0376011 |
|
abstract
(eng) |
The paper presents a detailed study of surface material recognition dependence on the illumination and viewing conditions which is a hard challenge in a realistic scene interpretation. The results document sharp classification accuracy decrease when using usual texture recognition approach, i.e., small learning set size and the vertical viewing and illumination angle which is a very inadequate representation of the enormous material appearance variability. The visual appearance of materials is considered in the state-of-the-art Bidirectional Texture Function (BTF) representation and measured using the upper-end BTF gonioreflectometer. The materials in this study are sixty-five different wood species. The supervised material recognition uses the shallow convolutional neural network (CNN) for the error analysis of angular dependency. We propose a Gaussian mixture model-based method for robust material segmentation. |
action |
ARLID |
cav_un_auth*0382047 |
name |
International Symposium on Visual Computing (ISVC 2019) /14./ |
dates |
20191007 |
mrcbC20-s |
20191009 |
place |
Lake Tahoe |
country |
US |
|
RIV |
BD |
FORD0 |
20000 |
FORD1 |
20200 |
FORD2 |
20205 |
reportyear |
2020 |
num_of_auth |
2 |
mrcbC52 |
4 A sml 4as 20231122144408.5 |
presentation_type |
PR |
inst_support |
RVO:67985556 |
permalink |
http://hdl.handle.net/11104/0302678 |
confidential |
S |
contract |
name |
Contract Book Contributor Consent to Publish |
date |
20190904 |
|
article_num |
12 |
arlyear |
2019 |
mrcbTft |
\nSoubory v repozitáři: haindl-0510488-Contract_Book_Contributor_Consent_to_Publish_LNCS_SIP_MH.pdf |
mrcbU14 |
85076168125 SCOPUS |
mrcbU24 |
PUBMED |
mrcbU34 |
000582481300012 WOS |
mrcbU63 |
cav_un_epca*0510482 Advances in Visual Computing : 14th International Symposium on Visual Computing (ISVC 2019) 978-3-030-33719-3 0302-9743 1611-3349 156 167 Cham Springer 2019 Lecture Notes in Computer Science 11844 |
mrcbU67 |
340 Bebis G. |
mrcbU67 |
340 Boyle R. |
mrcbU67 |
340 Parvin B. |
mrcbU67 |
340 Koracin D. |
|