bibtype C - Conference Paper (international conference)
ARLID 0510488
utime 20240103222838.1
mtime 20191106235959.9
SCOPUS 85076168125
WOS 000582481300012
DOI 10.1007/978-3-030-33720-9_12
title (primary) (eng) View Dependent Surface Material Recognition
specification
page_count 12 s.
media_type P
serial
ARLID cav_un_epca*0510482
ISBN 978-3-030-33719-3
ISSN 0302-9743
title Advances in Visual Computing : 14th International Symposium on Visual Computing (ISVC 2019)
page_num 156-167
publisher
place Cham
name Springer
year 2019
editor
name1 Bebis
name2 G.
editor
name1 Boyle
name2 R.
editor
name1 Parvin
name2 B.
editor
name1 Koracin
name2 D.
keyword convolutional neural network
keyword texture recognition
keyword Bidirectional Texture Function recognition
author (primary)
ARLID cav_un_auth*0101165
name1 Mikeš
name2 Stanislav
institution UTIA-B
full_dept (cz) Rozpoznávání obrazu
full_dept (eng) Department of Pattern Recognition
department (cz) RO
department (eng) RO
full_dept Department of Pattern Recognition
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101093
name1 Haindl
name2 Michal
institution UTIA-B
full_dept (cz) Rozpoznávání obrazu
full_dept Department of Pattern Recognition
department (cz) RO
department RO
full_dept Department of Pattern Recognition
garant K
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2019/RO/haindl-0510488.pdf
cas_special
project
project_id GA19-12340S
agency GA ČR
country CZ
ARLID cav_un_auth*0376011
abstract (eng) The paper presents a detailed study of surface material recognition dependence on the illumination and viewing conditions which is a hard challenge in a realistic scene interpretation. The results document sharp classification accuracy decrease when using usual texture recognition approach, i.e., small learning set size and the vertical viewing and illumination angle which is a very inadequate representation of the enormous material appearance variability. The visual appearance of materials is considered in the state-of-the-art Bidirectional Texture Function (BTF) representation and measured using the upper-end BTF gonioreflectometer. The materials in this study are sixty-five different wood species. The supervised material recognition uses the shallow convolutional neural network (CNN) for the error analysis of angular dependency. We propose a Gaussian mixture model-based method for robust material segmentation.
action
ARLID cav_un_auth*0382047
name International Symposium on Visual Computing (ISVC 2019) /14./
dates 20191007
mrcbC20-s 20191009
place Lake Tahoe
country US
RIV BD
FORD0 20000
FORD1 20200
FORD2 20205
reportyear 2020
num_of_auth 2
mrcbC52 4 A sml 4as 20231122144408.5
presentation_type PR
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0302678
confidential S
contract
name Contract Book Contributor Consent to Publish
date 20190904
article_num 12
arlyear 2019
mrcbTft \nSoubory v repozitáři: haindl-0510488-Contract_Book_Contributor_Consent_to_Publish_LNCS_SIP_MH.pdf
mrcbU14 85076168125 SCOPUS
mrcbU24 PUBMED
mrcbU34 000582481300012 WOS
mrcbU63 cav_un_epca*0510482 Advances in Visual Computing : 14th International Symposium on Visual Computing (ISVC 2019) 978-3-030-33719-3 0302-9743 1611-3349 156 167 Cham Springer 2019 Lecture Notes in Computer Science 11844
mrcbU67 340 Bebis G.
mrcbU67 340 Boyle R.
mrcbU67 340 Parvin B.
mrcbU67 340 Koracin D.