bibtype M - Monography Chapter
ARLID 0511101
utime 20240103222925.9
mtime 20191117235959.9
SCOPUS 85075680374
DOI 10.1007/978-3-030-31993-9
title (primary) (eng) Approximate Bayesian Prediction Using State Space Model with Uniform Noise
specification
book_pages 570
page_count 17 s.
media_type P
serial
ARLID cav_un_epca*0517111
ISBN 978-3-030-31992-2
ISSN 1876-1100
title Informatics in Control, Automation and Robotics : 15th International Conference, ICINCO 2018, Porto, Portugal, July 29-31, 2018, Revised Selected Papers
page_num 552-568
publisher
place Cham
name Springer
year 2019
editor
name1 Gusikhin
name2 O.
editor
name1 Madani
name2 K.
keyword stochastic state space model
keyword observation prediction
keyword Bayesian state space estimation
keyword uniform noise
author (primary)
ARLID cav_un_auth*0101119
full_dept (cz) Adaptivní systémy
full_dept (eng) Department of Adaptive Systems
department (cz) AS
department (eng) AS
full_dept Department of Adaptive Systems
name1 Jirsa
name2 Ladislav
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0382598
full_dept (cz) Adaptivní systémy
full_dept Department of Adaptive Systems
department (cz) AS
department AS
full_dept Department of Adaptive Systems
name1 Kuklišová Pavelková
name2 Lenka
institution UTIA-B
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0370768
full_dept (cz) Adaptivní systémy
full_dept Department of Adaptive Systems
department (cz) AS
department AS
full_dept Department of Adaptive Systems
name1 Quinn
name2 Anthony
institution UTIA-B
country IE
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2019/AS/pavelkova-0511101.pdf
cas_special
project
project_id GA18-15970S
agency GA ČR
country CZ
ARLID cav_un_auth*0362986
abstract (eng) This paper proposes a one-step-ahead Bayesian output predictor for the linear stochastic state space model with uniformly distributed state and output noises. A model with discrete-time inputs,\noutputs and states is considered. The model matrices and noise parameters are supposed to be known. Unknown states are estimated using Bayesian approach. A complex polytopic support of posterior probability density function (pdf) is approximated by a parallelotopic set. The state estimation consists of two stages, namely the time and data update including the mentioned approximation. The output prediction is performed as an inter-step between the time update and the data update. The behaviour of the proposed algorithm is illustrated by simulations and compared with Kalman filter.
RIV BC
FORD0 10000
FORD1 10200
FORD2 10201
reportyear 2020
num_of_auth 3
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0302396
confidential S
arlyear 2019
mrcbU14 85075680374 SCOPUS
mrcbU24 PUBMED
mrcbU34 WOS
mrcbU63 cav_un_epca*0517111 Informatics in Control, Automation and Robotics : 15th International Conference, ICINCO 2018, Porto, Portugal, July 29-31, 2018, Revised Selected Papers 978-3-030-31992-2 1876-1100 552 568 Cham Springer 2019 Lecture Notes in Electrical Engineering 613
mrcbU67 Gusikhin O. 340
mrcbU67 340 Madani K.