bibtype J - Journal Article
ARLID 0511450
utime 20240903203906.6
mtime 20191121235959.9
SCOPUS 85075353706
WOS 000504747200006
DOI 10.1007/s40300-019-00162-5
title (primary) (eng) Comparing clusterings using combination of the kappa statistic and entropy-based measure
specification
page_count 17 s.
media_type P
serial
ARLID cav_un_epca*0348913
ISSN 0026-1424
title Metron
volume_id 77
volume 3 (2019)
page_num 253-270
publisher
name Springer
keyword Comparing clusterings
keyword Clusters agreement
keyword kappa max statistic
keyword Normalized mutual information
author (primary)
ARLID cav_un_auth*0383037
name1 Uglickich
name2 Evženie
institution UTIA-B
full_dept (cz) Zpracování signálů
full_dept (eng) Department of Signal Processing
department (cz) ZS
department (eng) ZS
full_dept Department of Signal Processing
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101167
name1 Nagy
name2 Ivan
institution UTIA-B
full_dept (cz) Zpracování signálů
full_dept Department of Signal Processing
department (cz) ZS
department ZS
full_dept Department of Signal Processing
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0383038
name1 Vlčková
name2 D.
country CZ
source
source_type pdf
url http://library.utia.cas.cz/separaty/2019/ZS/uglickich-0511450.pdf
source
url https://link.springer.com/article/10.1007%2Fs40300-019-00162-5
cas_special
project
ARLID cav_un_auth*0351997
project_id 8A17006
agency GA MŠk
country CZ
abstract (eng) The paper focuses on a problem of comparing clusterings with the same number of clusters obtained as a result of using different clustering algorithms. It proposes a method of the evaluation of the agreement of clusterings based on the combination of the Cohen's kappa statistic and the normalized mutual information. The main contributions of the proposed approach are: (i) the reliable use in practice in the case of a small fixed number of clusters, (ii) the suitability to comparing clusterings with a higher number of clusters in contrast with the original statistics, (iii) the independence on size of the data set and shape of clusters. Results of the experimental validation of the proposed statistic using both simulations and real data sets as well as the comparison with the theoretical counterparts are demonstrated.
result_subspec WOS
RIV BB
FORD0 10000
FORD1 10100
FORD2 10103
reportyear 2020
num_of_auth 3
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0302474
confidential S
mrcbC86 3+4 Article Statistics Probability
mrcbC91 C
mrcbT16-s 0.311
mrcbT16-E Q4
arlyear 2019
mrcbU14 85075353706 SCOPUS
mrcbU24 PUBMED
mrcbU34 000504747200006 WOS
mrcbU56 pdf
mrcbU63 cav_un_epca*0348913 Metron 0026-1424 2281-695X Roč. 77 č. 3 2019 253 270 Springer