bibtype C - Conference Paper (international conference)
ARLID 0519795
utime 20241106135817.4
mtime 20200115235959.9
SCOPUS 85081588754
WOS 000507495600041
DOI 10.1016/j.ifacol.2019.12.656
title (primary) (eng) Preference Elicitation within Framework of Fully Probabilistic Design of Decision Strategies
specification
page_count 6 s.
media_type E
serial
ARLID cav_un_epca*0519794
ISSN 2405-8963
title IFAC-PapersOnLine. Volume 52, Issue 29 - Proceedings of the 13th IFAC Workshop on Adaptive and Learning Control Systems 2019
page_num 239-244
publisher
place Amsterdam
name Elsevier
year 2019
keyword dynamic decision making
keyword Kullback Leibler Divergence
keyword decision strategy
keyword fully probabilistic design
keyword preference elicitation
author (primary)
ARLID cav_un_auth*0101124
name1 Kárný
name2 Miroslav
institution UTIA-B
full_dept (cz) Adaptivní systémy
full_dept (eng) Department of Adaptive Systems
department (cz) AS
department (eng) AS
full_dept Department of Adaptive Systems
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101092
name1 Guy
name2 Tatiana Valentine
institution UTIA-B
full_dept (cz) Adaptivní systémy
full_dept Department of Adaptive Systems
department (cz) AS
department AS
full_dept Department of Adaptive Systems
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2019/AS/karny-0519795.pdf
cas_special
project
ARLID cav_un_auth*0372050
project_id LTC18075
agency GA MŠk
country CZ
project
ARLID cav_un_auth*0372051
project_id CA16228
agency EU-COST
country XE
abstract (eng) The paper proposes the preference-elicitation support within the framework of fully probabilistic design (FPD) of decision strategies. Agent employing FPD uses probability densities to model the\nclosed-loop behaviour, i.e. a collection of all observed, opted and considered random variables. Opted actions are generated by a randomised strategy. The optimal decision strategy minimises KullbackLeibler divergence of the closed-loop model to its ideal counterpart describing the agent’s preferences. Thus, selecting the ideal closed-loop model comprises preference elicitation.\nThe paper provides a general choice of the best ideal closed-loop model reflecting agent’s preferences. The foreseen application potential of such a preference elicitation is high as FPD is a non-trivial dense extension of Bayesian decision making that dominates prescriptive decision theories. The general solution is illustrated on the regulation task with a linear Gaussian model describing the agent’s environment.
action
ARLID cav_un_auth*0387490
name IFAC Workshop on Adaptive and Learning Control Systems 2019 /13./
dates 20191204
mrcbC20-s 20191206
place Winchester
country GB
RIV BD
FORD0 10000
FORD1 10100
FORD2 10103
reportyear 2020
mrcbC52 4 A sml 4as 20241106135817.4
presentation_type PR
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0304785
confidential S
contract
name Copyright form
date 20191107
mrcbC86 n.a. Proceedings Paper Automation Control Systems
mrcbT16-s 0.260
mrcbT16-E Q3
arlyear 2019
mrcbTft \nSoubory v repozitáři: karny-0519795 -ALCOS19_CopyrightForm_57.pdf
mrcbU14 85081588754 SCOPUS
mrcbU24 PUBMED
mrcbU34 000507495600041 WOS
mrcbU63 cav_un_epca*0519794 IFAC-PapersOnLine. Volume 52, Issue 29 - Proceedings of the 13th IFAC Workshop on Adaptive and Learning Control Systems 2019 2405-8963 239 244 Amsterdam Elsevier 2019