bibtype |
C -
Conference Paper (international conference)
|
ARLID |
0520496 |
utime |
20241106135819.8 |
mtime |
20200120235959.9 |
SCOPUS |
85078695401 |
DOI |
10.1109/IVCNZ48456.2019.8961023 |
title
(primary) (eng) |
Coniferous Trees Needles-Based Taxonomy Classification |
specification |
page_count |
6 s. |
media_type |
P |
|
serial |
ARLID |
cav_un_epca*0520495 |
ISBN |
978-1-7281-4188-6 |
ISSN |
2151-2191 |
title
|
International Conference on Image and Vision Computing New Zealand 2019 (IVCNZ 2019) |
page_num |
1-6 |
publisher |
place |
Piscataway |
name |
IEEE |
year |
2019 |
|
|
keyword |
Coniferous needles categorization |
keyword |
Tree taxonomy recognition |
keyword |
Spiral Markov random field model |
author
(primary) |
ARLID |
cav_un_auth*0101093 |
name1 |
Haindl |
name2 |
Michal |
institution |
UTIA-B |
full_dept (cz) |
Rozpoznávání obrazu |
full_dept (eng) |
Department of Pattern Recognition |
department (cz) |
RO |
department (eng) |
RO |
full_dept |
Department of Pattern Recognition |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0101239 |
name1 |
Žid |
name2 |
Pavel |
institution |
UTIA-B |
full_dept (cz) |
Rozpoznávání obrazu |
full_dept |
Department of Pattern Recognition |
department (cz) |
RO |
department |
RO |
full_dept |
Department of Pattern Recognition |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
source |
|
cas_special |
project |
ARLID |
cav_un_auth*0376011 |
project_id |
GA19-12340S |
agency |
GA ČR |
country |
CZ |
|
abstract
(eng) |
This paper introduces multispectral rotationally invariant textural features of the Markovian type applied for the effective coniferous tree needles categorization. Presented texture features are inferred from the descriptive multispectral spiral wide-sense Markov model. Unlike the alternative texture recognition methods based on various gray-scale discriminative textural descriptions, we take advantage of the needles texture representation, which is fully descriptive multispectral and rotationally invariant. The presented method achieves high accuracy for needles recognition. Thus it can be used for reliable coniferous tree taxon classification. Our classifier is tested on the open source needles database Aff, which contains 716 high-resolution images from 11 diverse coniferous tree species. |
action |
ARLID |
cav_un_auth*0387868 |
name |
Image and Vision Computing New Zealand (IVCNZ 2019) /34./ |
dates |
20191202 |
mrcbC20-s |
20191204 |
place |
Dunedin |
country |
NZ |
|
RIV |
BD |
FORD0 |
20000 |
FORD1 |
20200 |
FORD2 |
20205 |
reportyear |
2020 |
num_of_auth |
2 |
mrcbC52 |
4 A sml 4as 20241106135819.8 |
presentation_type |
PR |
inst_support |
RVO:67985556 |
permalink |
http://hdl.handle.net/11104/0305414 |
mrcbC61 |
1 |
confidential |
S |
contract |
name |
Copyright receipt |
date |
20191013 |
|
mrcbT16-s |
0.125 |
mrcbT16-E |
Q4 |
arlyear |
2019 |
mrcbTft |
\nSoubory v repozitáři: haindl-0520496-CopyrightReceipt (1).pdf |
mrcbU14 |
85078695401 SCOPUS |
mrcbU24 |
PUBMED |
mrcbU34 |
WOS |
mrcbU63 |
cav_un_epca*0520495 International Conference on Image and Vision Computing New Zealand 2019 (IVCNZ 2019) 978-1-7281-4188-6 2151-2191 1 6 Piscataway IEEE 2019 |
|