bibtype J - Journal Article
ARLID 0522296
utime 20240103223744.9
mtime 20200219235959.9
SCOPUS 85079542036
WOS 000521117800031
DOI 10.1016/j.sigpro.2020.107509
title (primary) (eng) Fractional Charlier Moments for Image Reconstruction and Image Watermarking
specification
page_count 15 s.
media_type P
serial
ARLID cav_un_epca*0255076
ISSN 0165-1684
title Signal Processing
volume_id 171
publisher
name Elsevier
keyword Discrete Orthogonal Moments
keyword Fractional Charlier Moments
keyword Fractional Charlier Polynomials
keyword Spectral decomposition
keyword Image reconstruction
keyword Image watermarking
author (primary)
ARLID cav_un_auth*0389707
name1 Yamni
name2 M.
country MA
author
ARLID cav_un_auth*0389708
name1 Daoui
name2 A.
country MA
author
ARLID cav_un_auth*0389709
name1 El ogri
name2 O.
country MA
author
ARLID cav_un_auth*0389710
name1 Karmouni
name2 H.
country MA
author
ARLID cav_un_auth*0389711
name1 Sayyouri
name2 M.
country MA
author
ARLID cav_un_auth*0389712
name1 Qjidaa
name2 H.
country MA
author
ARLID cav_un_auth*0101087
name1 Flusser
name2 Jan
institution UTIA-B
full_dept (cz) Zpracování obrazové informace
full_dept Department of Image Processing
department (cz) ZOI
department ZOI
full_dept Department of Image Processing
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2020/ZOI/flusser-0522296.pdf
source
url https://www.sciencedirect.com/science/article/pii/S0165168420300529
cas_special
project
project_id GA18-07247S
agency GA ČR
ARLID cav_un_auth*0360229
abstract (eng) In this paper, we propose a new set of discrete orthogonal polynomials called fractional Charlier polynomials (FrCPs). This new set will be used as a basic function to define the fractional discrete orthogonal Charlier moments (FrCMs). The proposed FrCPs are derived algebraically using the spectral decomposition of Charlier polynomials (CPs), then the Lagrange interpolation formula is used to derive the spectral projectors. Then, each spectral projector matrix is decomposed by the singular value decomposition (SVD) technique in order to build a basic set of orthonormal eigenvectors which help to develop FrCPs. FrCMs are deduced in matrix form from the proposed FrCPs and are applied for image reconstruction and watermarking. The experimental results show the capacity of the FrCMs proposed for image reconstruction and image watermarking against different attacks such as noise and geometric distortions.
result_subspec WOS
RIV JD
FORD0 10000
FORD1 10200
FORD2 10201
reportyear 2021
num_of_auth 7
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0307359
mrcbC61 1
confidential S
article_num 107529
mrcbC86 1* Article Engineering Electrical Electronic
mrcbC91 C
mrcbT16-e ENGINEERINGELECTRICALELECTRONIC
mrcbT16-i 3.63946
mrcbT16-j 0.964
mrcbT16-s 0.907
mrcbT16-B 78.831
mrcbT16-D Q1
mrcbT16-E Q2
arlyear 2020
mrcbU14 85079542036 SCOPUS
mrcbU24 PUBMED
mrcbU34 000521117800031 WOS
mrcbU63 cav_un_epca*0255076 Signal Processing 0165-1684 1872-7557 Roč. 171 č. 1 2020 Elsevier